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This paper aims to compare the application of most common forecasting techniques 
within financial data context such as regression analysis and artificial neural network, 
according to the most popular forecasting efficiency indices. Findings depicted that 
robust regression has an advantages over the least square regression and ANN, in 
financial data analysis because of outliers derived from business cycles. To this aim, 
relationship between earning per share, book value of equity per share and share price 
as price model and earnings per share, annual change of earning per share and return of 
stock as return model scrutinized implementing robust and least square regressions as 
well as ANN. Based on results, it can be concluded that the robust regression can 
provide better and more reliable analysis owing to eliminating or reducing the 
contribution of outliers and influential data. Therefore, robust regression outperforms 
OLS and ANN, and can be recommended reaching more precise analysis in financial 
data context. 
 

Contribution/ Originality: This study contributes in the existing literature of financial forecasting models. 

Since it compare two common forecasting techniques with robust regression analysis based on the most important 

forecasting indices and clarified that robust analysis outperforms the other techniques because of the existence of 

outliers in financial data context. 

 

1. INTRODUCTION 

A statistical method commonly used in forecasting financial data is the regression analysis which often employs 

the least square regression (OLS) as its main means. However, as is obvious much deviation is experienced in 

financial data because of changes in financial policies and commercial cycles that inevitably gives rise to outlier 

observations in overall data (Ohlson, 1995). Since the least square regression is vulnerable to such outlier 

observations that will ultimately affect results from this technique (Anderson and Sweeney, 1998; Chen, 2002) and 

this will end in wrong conclusion and misleading users. The vulnerability of OLS regression to outliers may result 

from the failure to meet substantial assumptions required for this model.   

The assumption of normality is a crucial basis for most statistical methods of data analysis. However, various 

papers have shown this is true only with 10%-15% of data. This may be attributed to non-normal distribution of 

errors or the effect of outliers in observations (Liang and Kvalheim, 1996). Outliers are the observations not fitted 

to the pattern developed by the majority of the data (Bamett and Lewis, 1993; Preminger and Franck, 2007). There 
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are two attitudes in statistical modeling in dealing with outliers. The first takes into account the outliers and the 

second eliminates outliers. Many scholars believe using robust estimation is necessary where outliers are not 

eliminated from the statistical analysis (Liang and Kvalheim, 1996). 

Another essential assumption in regression analysis is the constancy of the error variance which is called 

homoscedasticity. Outliers, even when the sample is large enough, can lead to the accumulation of error variance 

and give rise to heteroskedasticity which means the error variance is not constant (Rousseeuw, 1984).  

In most cases, especially when data are acquired in a continuous period of time like time series analysis, as is 

true with financial data, the correlation of data will be probable (Field and Zhou, 2003). The correlation will make 

errors interdependent in the regression model and reject the assumption of independent errors. The rejection of the 

assumption will lead to the inflation of the R square (R2) and erroneous significance of the developed regression 

model (Rousseeuw, 1984). This situation indispensably necessitates using robust regression models (Field and 

Zhou, 2003).  Hence, in order to cope with financial data as a time series analysis, it is necessary to use a regression 

model that is not vulnerable to outliers and prevent bias of outcomes. The robust regression is a good substitution 

for the least square regression concerning this issue. According to above, this study aims to introduce the strength 

of robust regression in financial time series analysis, in order to encourage scholars and practitioners to deploy this 

technique as a mean of improving the quality of their analysis. Although there are a lot of state of the art techniques 

for forecasting such as Artificial Neural Networks (ANNs) with high rate of accuracy but the ration of statistical 

techniques and their analyzability make them in practice up to know. 

In addition to above, ANN as a nonparametric technique which can learn the data nature like human brains do 

is used as a forecasting technique in comparing the efficiency of forecasting techniques within two popular financial 

models in Iran’s stock exchange. NNs cannot act as suitable as regression analysis for financial analysis and 

forecasting, because that the equations and the predicting coefficients are not clear in NNs which leads to weaker 

analyzability. Also there are not some validating statistical test for ensuring the estimated parameters where there 

are not estimated within NNs which makes it more unacceptable to practitioners.  In the following, the paper after a 

short reviewing of the outliers, their roles in financial data analysis and robust regression as well as NNs, will 

compare these popular forecasting techniques in case of two financial models (Return and Price model) and their 

strengths and weakness will be concentrated. 

 

2. LITERATURE REVIEW 

In this section, firstly outliers, their types and dominions will be discussed. Subsequent to grasping the concept 

of outliers, number of robust regression techniques that can attenuate the role of outliers will be introduced. To 

formulate a robust regression model one should not restrict out an observation to some isolated sporadic cases but 

should identify outliers and influential data in order to reduce or eliminate their effects (Chatterjee and Hadi, 2006). 

In the following, the paper has provided NNs in summary within section D and the most common forecasting 

efficiency indices through section E.  

 

2.1. Outliers 

Outliers are the observations concomitant of high error residual (Gujarati, 1995). The error volume is equal to 

the difference between the observed quantity and the predicted quantity for ith observation. This can be derived 

from: 

       ̂                                                  

The summation of errors is zero in a regression technique but the variance of errors can be different. This 

difference reduces the significance of comparing models. To overcome inequality of the error variance, their 

standardized values are used (Anderson and Sweeney, 1998; Martin, 2002). Standardized errors usually have a 
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normal distribution with zero mean value and standard deviation of 1. The points with standardized error more 

than 2 or 3 and the standard deviation beyond the mean value (zero) are regarded as outliers (Martin, 2002). 

Drawing diagrams is another technique to identify outliers. In this method, a distribution diagram or estimated 

deviation diagram is prepared, and the points away from the concentration of points or the regression line are 

outliers (Azar and Momeni, 2008). Figure 1 depicts a number of data, as well as an outlier. It should be noted where 

we have a great deal of data we will face more constraints in using the schematic presentation.  

 

 
Fig-1. Identifying an outlier by means of a diagram 

 Source: Author  

 

Based on this introduction, if the deviation of an error is too large it is designated as an outlier. Therefore, the 

value of the dependent variable is a quantity used to identify outliers. Another type of outliers that are called 

influential data are investigated in relation to independent variables, that is, if a data much different from the 

average of data as concerned the independent variable it is an influential data (Martin, 2002).  

 

2.2. Influential Observations 

Sometimes, one or more data have remarkable effect on estimated parameters of a regression model. These are 

known as influential data (Chatterjee and Hadi, 1986). In other words, influential data are the data whose removal 

from the model will give rise to crucial alteration in the model though eliminating every observation introduces a 

change in the regression model, but when there are notable changes (including change in the slope or intercept) 

that observation will be influential (Martin, 2002). Figure 2 shows an influential data beside the regression line. 

The regression line in this diagram has a negative slope, and if the influential observation is removed the line’s 

slope will become positive and the intercept will reduce. Evidently, this observation has a greater role in 

determining the estimated regression.   

 

 
Fig-2. The effect of an influential data on the regression 

                                                                         Source: Author  
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The leverage value can be employed to find out influential observations. The leverage value is the difference in 

the magnitude of independent variables from their mean value. The leverage value for ith observation is calculated 

using this formula:  

    
 

 
 

     ̅  

∑     ̅  
                                         

Where n is the number of observations,    is ith observation,  ̅ mean value of observations and    the leverage 

value of ith observation.  

Usually, the points with the leverage value two times the average of leverage values are known as the points 

with high leverage value (influential) (Hoaglin and Welsch, 1978). Of course, some researchers admit the points 

with a leverage value above 0.5 as the influential data (Chatterjee and Hadi, 2006). Statistical tests have been 

developed for the identification of influential observations. Almost all of these tests use the leverage value as a main 

tool. One of the most famous tests is the Cook’s distance measure (Cook, 1977). The Cook’s distance measure uses 

both the leverage value and the error magnitude to measure the extent of influence of the data. The equation 3 

shows how this test is calculated: 

   
    

 

∑       
 [

  

      
 ]                         (3) 

In this equation, K denotes for the number of independent variables, and Se denotes the standard error of 

estimation. To know further about this technique, the reader is advised to see the Chatterjee and Hadi (1986).  

 

2.3. Robust Regression  

Robust regression is the regression that tries to minimize or eliminate the effect of outliers or influential data in 

order to provide a more reliable estimation based on the majority of data. In other words, robust regression is an 

attempt to find real results out of most data (Martin, 2002). Hence, various types of robust regression fall in the 

category of robust estimation methods that function through eliminating or moderating the effect of outliers (Liang 

and Kvalheim, 1996). It was noted earlier that the normality of errors is one of the primary assumptions in 

regression models but there is always some divergence from this assumption. In such cases, robust regression can 

be a substitute for the least square method which is less susceptible to the divergence (Rousseeuw, 1984). The OLS 

regression is not immune to outliers owing to its objective-oriented nature of the OLS. This fact is illustrated in the 

equation 4 that shows the minimum of the summation of errors.  

   ∑  
  ∑                       

Where    stand for error,     for the dependent variable and     the independent variable and {θ j , j=1,…,m} 
are the parameters estimated by the OLS model (Liang and Kvalheim, 1996).  

The model’s susceptibility to the error square is obvious; hence outliers significantly contribute to the 

formation of parameters.  

Edgeworth (1887) pioneered the development of the robust regression. He pointed out that outliers, owing to 

becoming square, crucially impress the OLS. Therefore, he presented the least absolute deviation model (equation 5) 

((Ohlson, 1995). 

   ∑|  |                                                  

This technique is called the L1 regression model while the model in relation 4 is designated as the L2 

regression. Unfortunately, L1 is highly susceptible to the second-type outliers, that are, the data with bad leverage 

value. The data with bad leverage value is the one that besides having a high leverage effect (influential) is itself an 

outlier. In other words, it is both far from independent variables and contaminated with a large degree of errors 

(Liang and Kvalheim, 1996). 
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Hodges (1967) introduced the concept of breakdown point in order to help assessing the robust regression’s 

stability toward outliers. Rousseeuw and Leroy (1987) defined breakdown point as the lowest ratio of outliers that 

can impair the regression model. The higher the breakdown point in a regression model, the more satisfactorily 

model functions. For L1 and L2, the breakdown point is equal to 1/n. In other words, as the result of the existence 

of an outlier in a set of    data, it can render invalid the model by errors (Liang and Kvalheim, 1996). 

There are various types of robust regression that with different functions try to provide a stable model. 

Choosing which robust regression is suitable for a case depends on the nature of data and the discretion of the 

persons using the regression (Liang and Kvalheim, 1996).  

Next to LAD, least trimmed square (LTS) is another type of robust regression. This regression, introduced by 

Rousseeuw for the first time in 1984, is a technique to eliminate possible outliers (Rousseeuw and Van Driessen, 

1998). Coefficients in the equation of the least trimmed square regression are estimated similar to the ordinary 

regression (least square). In other words, the coefficients in these two types of regression are estimated in a way to 

minimize the summation of the second power of errors. However, in least trimmed square, unlike the ordinary 

regression, not all data is used in estimating the regression model but the data accompanied with high errors are 

eliminated (Rousseeuw, 1984). 

The equation 6 explains how data are selected and which mechanism is used in least trimmed square to 

estimate the equation (Rousseeuw and Leroy, 1987).  

   ∑      ̂ 
 

 

   

             ⁄       

Where   is the number of observations,    the value of ith observation,   ̂ the anticipated value of ith 

observation, q is the number of the data used in least trimmed regression equation, and k the number of parameters 

including the intercept.  

To find the data required to estimate the least trimmed square regression, the second power of each 

observation is calculated. Then, these values are arranged in an ascending order. Finally, the observations with 

least error square are selected and this procedure continues up to the observation q.  

It should be noted that in some statistical software programs (like S-PLUS), if the data used in estimating the 

least trimmed square regression is less than 90% of the data, only the 90% of the data are used in estimating the 

equation. Some researches doubt the reliability of such regressions (Li et al., 2010) though this regression has 

improved owing to the introduction of another initiative called the rapid least trimmed square that was set forth by 

Rousseeuw and Van Driessen (1998); Rousseeuw and Leroy (1987).  

Another version of robust regression is the iteratively reweighted least square that was presented by Chatterjee 

and Mächler (1997). In iteratively reweighted least square regression, the points with high leverage value and high 

error are almost prevented from contributing to the outcome in a lesser extent in order to reduce their effects on 

results of the regression analysis. In this regression, the weight of ith observation is calculated from this equation: 

  
 
 

       
 

    (|  
   |    |  

   |)
                           

Where   
 
 denotes the weight of ith observation,     the leverage value of the ith observation,   

   
 the error 

with the ith observation, and    |  
   

| the average of the absolute value of errors.  

As the above equation shows the point with higher leverage value and error are given a lower weight and 

ultimately reduces their contribution to the result of the analysis. It should be noted that estimating coefficients in 

the weighted regression seeks to minimize the summation of the square of weighted errors not minimizing the 

summation of the square of errors.  
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2.4. Artificial Neural Network 

ANN usually called ―neural network‖ (NN), is a mathematical model or computational model that tries to 

simulate the structure and/or functional aspects of biological neural networks. It consists of an interconnected 

group of artificial neurons and processes information using a connectionist approach to computation. In most cases 

an ANN is an adaptive system that changes its structure based on external or internal information that flows 

through the network during the learning phase. Modern neural networks are non-linear statistical data modeling 

tools. They are usually used to model complex relationships between inputs and outputs or to find patterns in data 

(Li et al., 2010). 

Although lots of architecture for designing neural network models can be developed, in this study a feed 

forward neural network is deployed for data analyzing which is mentioned as the most popular and most widely 

used model in many practical applications (Li et al., 2010). The model is developed based on three layers, one input, 

one output and a hidden layer. The number of neurons developed based on the data nature in input and output 

layer, and neuron number of hidden layer set as (2×n + 1) based on Kolmogorov Theorem. In which,   denotes to 

the number of input layer neurons. 

 

2.5. Forecasting Efficiency Indices 

After introducing Robust regression and NNs, this section aims to review the forecasting accuracy indices, 

which are widely have been used, including the root mean square error (RMSE), mean absolute error (MAD), mean 

absolute percentage error (MAPE), and the success rate (SR) that counts the number of right forecast of the sign of 

the true value by the model (Ohlson, 1995). If    and   ̂ are taken as the true value and the anticipated value in   

period and proportionally calculate the forecast from i+l to i+n period then the equations for calculating 

abovementioned indices will be as follows: 

     √
 

 
∑       ̂ 

 

   

     

    

    
 

 
∑ |     ̂|
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3. RESEARCH METHODOLOGY 

This is an experimental and developmental research, in category of casual correlation researches with the goal 

of forecasting improvement. It also tries to show the strength and capability of robust regression in analyzing 

financial data. Ultimately, it tries to prevent probable bias that may be produced by the least square regression in 

time series forecasting. In this case, the input of the study is the data collected from 135 companies in the Tehran 

stock exchange in the period 2002-2009. These data have been gathered cumulatively and include 1080 company-

year data. 
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Financial researches often discuss the relation between accounting data and the stock return or stock price. 

This research also considers this relation through the Price and Return models. The Price model relates the stock 

price to dividend and the book value of the stock. On the other hand, the Return model links the stock return to the 

dividend and its annual change. To this aim, OLS, IRILS and LTS regression models and NNs are used for 

developing above mentioned models. Ultimately comparisons within all models are provided. Statistical analyses 

have been carried out using SPSS and S-PLUS statistical tools.  

 

3.1. Deployed Models 

In this research, developing regression models and collecting data have been based on two Return model and 

Price model. The Return model illustrates the relation between the stock return and accounting profit, and includes 

dividend per stock and fluctuations in the dividend as independent variables. This model which was presented by 

Easton and Harris can be described as follows (Easton and Harris, 1991): 

                                             (12) 

In this model,      is the annual yield of the company,   denotes dividend,           changes in dividend per 

stock and       is the last year’s stock prices. 

Another model, which is known as the Price model, was introduced by Ohlson for the first time in 1995 (Neter 

et al., 1996). This model explains the relation between the stock price and two independent variables – dividend per 

stock and the book value of stocks – and can be shown in the equation 13.  

                         (13) 

In this model,      is the market value of stocks from the company    at the end of the month of presenting 

financial statements,      stands for the book value of each stock of the company  , and     is the accounting profit 

reported for each stock of the company   in period  .  

All variables of the presented study, excluding the book value, have been calculated for each company. The 

stock return variable has been calculated from the difference between the price of a stock at the end of the month of 

presenting financial statements of the company in the last year and the price of a stock at the end of the month of 

presenting financial statements in the current year plus yields (including the dividend, reward) proportional to the 

price of a stock price at the end of the month of presenting financial statements in the last year. In the next section, 

we will discuss the result of employing these various types of regressions and NNs in estimating related models and 

will compare their performance in order to ultimately choose the most favorable forecasting technique. 

 

4. FINDINGS AND CONCLUSION 

Results of regression analysis according to the Price model are presented in table 1. As it is clear, the adjusted 

determination coefficient in the least square regression is equal to 0.474 that shows independent variables of the 

model (dividend arising from each stock and the book value of the stocks) explains for 47% of the changes in the 

dependent variable (stock price). Furthermore, the t-student test shows the insignificance of the book value variable 

at the level of 5%. In other words, there is no significant relation between the stock price and the stock book value. 

Results of the IRLS regression are somewhat different. According to this regression and regarding the adjusted 

determination coefficient, more than 70% of the changes in stock prices are explained by the dividend and the book 

value of each stock. Additionally, both independent variable (dividend per stock and the book value) are significant 

at the level of 5% error. Which means by 95% confidence Therefore, using the iteratively reweighted least square 

regression (IRLS) analysis proves the relation between the variables and the stock price. The LTS model allows 

explaining more than 60% in the dependent variable. This model is implemented through the S-Plus software 

program and is not fitted for running t test. It should be noted that all the three models are significant from the 

standpoint of the F- test. Therefore, the fitness of the models is approved.  
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Table-1. Results of the Regression Analysis for the Price Model 

T- Test β   

EPS BV EPS BV R2 Model 

P-value T P-value T     

0.00 28.54 0.37* 0.89 5.56 0.19 0.47 OLS 
--- --- --- --- 3.56 0.42 0.62 LTS 

0.00 46.59 0.02 2.31 5.09 0.23 0.72 IRLS 

                             * BV is rejected in OLS regression analysis 

 

The difference between results of these three regressions can be explained in the light of reducing the effect of 

outliers and influential data. These data damages the efficiency of the model and the lever of significance of one of 

independent variables in the lease square regression. Based on this, if the researchers relies on the least square 

regression to draw result he will go wrong and the analysis will end in false findings. Consequently, it can be 

concluded that robust techniques will provide more satisfactory results and we will discuss this later. It is clear that 

by using IRLS the r-square is increased to 0.72 from 0.47 of OLS which means that the IRLS is more powerful in 

determining the dependent variable.  

Table 2 shows the result of regression analysis for the Return model. The adjusted coefficient in the least 

square regression is about 0.14. In other words, only 14% of changes in the dependent variable (stock return) can be 

explained by independent variables (dividend for a stock and the book value of stocks).  

In LTS regression technique, independent variables are able to explain the stock return somewhat better. Of 

course, in the IRLS this improvement is remarkable and is about 24%. A comparison of regression analyses in the 

Return model shows that reducing the impact of outliers and influential data improves the efficiency of the model. It 

must also be noted that using robust regression does not always lead to enhancement of results of a regression 

analysis but it helps making the results more realistic. Anyway, all the employed techniques are significant with 

respect to the F test.  

 

Table-2. Results of the Regression Analysis for the Return Model 

T- Test β 

R2 Regression 
EPS/PΔ EPS/P 

EPS/PΔ EPS/P P-
value 

T P-value T 

0.0 5.23 0.00 8.06 32.06 110.99 0.139 OLS 
--- --- --- --- 19.08 115.25 0.142 LTS 
0.0 6.86 0.00 11.28 32.24 111.65 0.244 IRLS 

                                   Source: Author’s calculation 

 

We have used the same criteria of assessment described in the section E of Literature, in order to scrutinize the 

performance of the developed models according to employed techniques. Calculation of the related indices for 

abovementioned regression techniques in addition with NN method for both Price and Return model is depicted in 

tables 3 and 4 respectively. In evaluating the techniques, the lower RMSE, MAD and MAPE indices, and the more 

the SR index, will lead to the more desirable considered technique.  

 

Table-3. Comparison of OLS, IRLS and LTS Regression and NN in Price Model 

Mean rank MAPE SR MAD RMSE Regression 

3.25 (4) 0.6768  (4)  92.2%  (3) 4075.77 (4) 8008.56  (2)*     OLS 
2.5   (2) 0.5065  (3) 93.1%  (2) 3800.5   (1) 8711.85 (4)     LTSR    
2.75 (3) 0.5680  (2) 91.9%  (4) 3802.18 (2) 8087.73 (3)     IRLSR 

2.25 (1)** 0.6993  (4) 95.1%  (1) 3872.54 (3) 7712.81 (1)     NN 
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              Source: Author’s calculation 

 

As is seen, as MAD, MAPE and SR indices are concerned robust technique have functioned better than OLS. 

The value of SR for OLS regression is approximately 92%. The most favorable value is 100% and shows all 

predictions are of the same sign with real values. From the value 92% it is inferred that in 8% of cases the sign of 

the predicted value is contrary to the sign real values. In other words, the model is extremely weak in 8% of cases. 

 On the other hand, the result is inversed when RMSE index is used as a criterion for comparison. It can be 

concluded that robust model’s performance is less satisfactory when this index is measured. However, in order to 

prevent the accumulation of outlier-simulated error in RMSE it is recommended to use the MAD index. Some 

researchers approve using this initiative (Liang and Kvalheim, 1996).  

The ranking of techniques according to different Indices depicted that although there are some deviations, but 

as a whole NN is more efficient than robust techniques and the worst efficient technique is OLS regression 

according to Mean ranking. 

 

Table-4. Comparison of OLS, IRLS and LTS Regressions and NN in Return Model 

Mean rank MAPE SR MAD RMSE Regression 

3.00 (2) 7.620  (4) 65.2%  (3) 52.92  (4) 82.49  (1)*    OLS 
2.66 (1)** 4.741  (1) 65.3%  (2) 50.03  (1) 84.98  (4)    LTSR 
2.66 (1)** 5.848  (2) 65.4%  (1) 50.51  (2) 83.30  (3)    IRLSR 

3.00 (2) 7.313  (3) 64.6%  (4) 51.74  (3) 82.92  (2)    NN 

                 * Rank **Most efficient Robust technique 

 

In Return model the results are different. In this model the robust techniques are more efficient than both NN 

and OLS. It can be concluded that according to the data itself the efficiency of forecasting techniques may differ, but 

in both cases the robust technique outperform the OLS in financial data, which may be because of the outliers that 

explained before in the nature of financial data. As the findings provided except RMSE the robust techniques are 

more favorable than the others.  

It is clear that according to the findings, the fact that robust techniques are more suitable than OLS for 

financial data. The nature of financial data are full of business cycles, regulatory constraints, temporary growth 

times, changes in financial policies and commercial cycles which inevitably gives rise to outlier observations in 

overall data. To cope with these problems, practitioners should use robust regression techniques instead of ordinary 

least square techniques to avoid misleading results.   

In comparing Robust regression models with NN, it can be concluded that although NN can forecast the 

financial data and time series with a high rate of accuracy but some inherent shortcomings of NN, makes it difficult 

to be deployed as an analytical tool for financial engineering purpose. Apart from defining the general architecture 

of a network and perhaps initially seeding it with a random numbers, the user has no other role than to feed it input 

and watch it train and   the output. Somehow the user even doesn’t know about the algorithm and this can lead to 

misuse of the NN. In addition to that the final product of this activity is a trained network that provides no 

equations or coefficients defining a relationship (as in regression) beyond its own internal mathematics. The 

network 'IS' the final equation of the relationship. It means that by the NN product the user cannot manipulate and 

design alternative strategies to check the outcome which can be done easily with regression equations. Ultimately 

by reviewing some popular forecasting models in practical financial forecasting, it is clear that Robust regression by 

combining the power of efficient forecasting and producing analytical equation can outperform the other regression 

and NNs models within financial data analyzing. 
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