Energy Economics Letters

ISSN(e): 2308-2925 DOI: 10.18488/journal.82.2018.51.23.30 Vol. 5, No. 1, 23-30 © 2018 AESS Publications. All Rights Reserved. URL: <u>www.aessweb.com</u>

PREDICTION OF ENERGY CONSUMPTION OF TURKEY ON SECTORAL BASES BY ARIMA MODEL

Suat Ozturk¹
Feride Ozturk²⁺

¹DERAC, Zonguldak Bülent Ecevit University, Zonguldak, Turkey Email: <u>suatozturk@beun.edu.tr</u> Tel: (+90)3722911526 ²Department of International Trade and Business, Zonguldak Bülent Ecevit University, Zonguldak, Turkey Email: <u>feride.ozturk@beun.edu.tr</u> Tel: (+90)3722911397

ABSTRACT

Prediction of sectoral or total energy consumption for any country is very important

issue to plan both short and long-term energy strategies and policies. In this study, the

Article History

Received: 3 October 2018 Revised: 8 November 2018 Accepted: 10 December 2018 Published: 11 January 2019

Keywords ARIMA Forecasting Energy consumption Turkey Sectoral energy consumption Energy policy

JEL Classification: C50, C52, Q40, Q47.

historical energy consumption data of four sectors and their total from 1970 to 2015 is used in a class of autoregressive integrated moving average (ARIMA) models to predict both sectoral and total energy consumption of Turkey for the next 15 years. The results indicate that Turkey's sectoral and total energy consumption will be following an upward trend during the forecast period. Energy consumptions of industry, transport, residential-commercial and public service and agriculture sectors and their total will continue to increase at an annual average rate of 1.59 %, 4.66 %, 2.97 %, 2.46 % and 3.93 %, respectively, in the next 15 years.

Contribution/ Originality: In a large number of empirical studies, total energy consumption has been predicted for various countries while the empirical work related to sectoral energy consumption prediction is scarce. In addition, the studies that predicted the sectoral energy consumption is generally consider one sector of the economy. The contribution of this study is to predict energy consumptions of industry, transport, residential-commercial and public service and agriculture sectors and their total for Turkey from 2016 to 2030.

1. INTRODUCTION

Turkey is roughly located at the intersection point of Europe and Asia from the east to the west with Africa and Europe from the south to the north and has 774,815 km² surface area (Bilgili *et al.*, 2012). According to Turkish Statistical Institute (TSI), Turkey's population regularly average annual increase of 1.8% from 34.8 million in 1970 to 78.7 million in 2015 and increased by 126% in 45 years. The population of Turkey is estimated to be over 88 million by 2030 (Turkish Statistical Institute, 2013). Hence, it is expected that the country's energy needs will further increase in the near future.

An increase in population, fastening economic growth and development have led sectoral energy demand to rise up over the centuries. Energy demand of developing countries approximately increases between 6% and 8% per

year (Karaaslan and Gezen, 2017). Therefore, predicting future energy needs is vital to determine and plan energy policies and strategies investing in various sectors to meet future energy demand.

In the related literature, many studies used various methods to forecast future energy demand of Turkey and other countries at total or sectoral bases. Sözen (2009) made a future projection of energy dependency of Turkey using an artificial neural network (ANN) model. Hamzaçebi (2007) estimated Turkey's net electricity energy consumption on sectoral basis applying ANN. Dilaver and Hunt (2011) forecasted an industrial electricity demand for Turkey by structural time series model (STSM). Jobert and Karanfil (2007) used notion of Granger and instantaneous causality to find sectoral energy consumption by source and economic growth in Turkey. Sözen et al. (2007) forecasted sectoral energy consumption of greenhouse gas emissions in Turkey and mitigation policies using ANN. Dilaver and Hunt (2011) applied underlying energy demand trend (UEDT) and STSM models to forecast Turkish residential electricity demand. Liu et al. (2016) combined a grey neural network and input-output forecasting models to predict primary energy consumption of sectors of Spanish economy. Chai et al. (2016) analyzed energy demand of transportation sector in China using an exponential smoothing, ARIMA and multi regression methods. Azadeh et al. (2008) predicted electricity consumption of industrial sector in Iran by ANN. Sen et al. (2016) applied ARIMA for forecasting energy consumption of pig iron manufacturing in India. Yuan et al. (2016) compared ARIMA and Grey models for forecasting primary energy consumption of China. Li et al. (2012) forecasted short-term electricity consumption for Asian developing countries using an adaptive Grey-based approach. Ghedamsi et al. (2016) used a bottom-up model to predict energy consumption for residential buildings in Algeria. Pukšec et al. (2013) forecasted long-term energy demand of Croatian transport sector using EDT model. Cabral et al. (2017) predicted electricity consumption in Brazil by Spatial ARIMA model. Hussain et al. (2016) predicted electricity consumption in Pakistan via ARIMA model.

In this study, energy consumption data of industry, transport, residential-commercial and public service, and agriculture sectors and their total of Turkey for 1970-2015 is utilized to predict energy consumption for the period of 2016-2030. The energy consumption projection of the sectors are carried out with a class of univariate ARIMA models. It is believed that the present study will contribute to the limited amount of research in the related literature on Turkey's energy consumption in sectoral bases and will be reference to both policy planers and makers. The rest of the study is organized as follows. Section 2 describes data sources and empirical methodology used. Section 3 presents the results of the ARIMA models in predicting yearly energy consumption of sectors of the economy and their total for the next fifteen years and policy implications. The last section contains concluding remarks.

2. DATA AND METHODOLOGY

This study is based on historical data on energy consumption of industry, transport, residential-commercial and public service, agriculture sectors and their total for the 1970-2015 period. The data is extracted from website of Turkish General Directorate of Energy. The energy consumption variables are measured in ton of oil equivalent (toe). E-Views 9 statistical software is used to estimate a class of univariate ARIMA models.

ARIMA models were introduced by Box and Jenkins (1970). These are the most popular class of models for forecasting time series and have been broadly used. ARIMA depends on autocorellation patterns in the series because it uses the information in the series itself to make forecast without involving independent variables (Box and Jenkins, 1976).

ARIMA (p, d, q) model has three parameters: (1) order of autoregressive process (AR), (2) the order of difference to make non-stationary series stationary (I), and (3) the order of moving average process (MA), represented respectively by "p", "d" and "q".

The equation of the generalized univariate ARIMA model is

$$Y_{t} = \mu + \alpha_{1} Y_{t-1} + \ldots + \alpha_{p} Y_{t-p} - \theta_{1} e_{t-1} - \ldots - \theta_{q} e_{t-q}$$
(1)

where the differenced time series value is Y_t , unknown parameters are α and θ , and independent identically distributed error terms are e. p is the number of autoregressive terms (AR) and q is the number of lagged forecast errors (MA) in the prediction equation .

3. EMPIRICAL RESULTS AND POLICY IMPLICATIONS

As stationary is essential in ARIMA forecasting, first ADF (Augmented Dickey-Fuller) unit root test is realized with and without a time trend variable. If unit root is found, it means that time series are non-stationary, using non-stationary series will result in spurious regression. ADF test results are given in Table 1. The results indicate that stationary situation is obtained in the first differences of all energy consumption variables. Therefore, first differences of the variables are included as dependent variable in each univariate ARIMA model, meaning that process I of the ARIMA models are determined as (1). Then, all the univariate ARIMA models are estimated in the following form:

$$Y_{t} - Y_{t-1} = \mu + \alpha_{1} Y_{t-1} + \ldots + \alpha_{p} Y_{t-p} - \theta_{1} e_{t-1} - \ldots - \theta_{q} e_{t-q}$$
(2)

where, $Y_t - Y_{t-1}$, is the first difference of energy consumption variable, namely an industry, transport, residential-commercial and public service, agriculture sectors and their total, unknown parameters are α and θ and independent identically distributed error terms with zero mean are e.

Variables		Level	First Difference
Industry	wc	-1.73	-7.36*
	wct	-2.14	-7.62*
Transport	wc	-0.58	-5.81*
	wct	-2.89	-5.73*
Residential, Commercial and Public Service	wc	-2.02	-3.06**
	wct	-1.82	-3.22***
Agriculture	wc	-2.14	-6.53*
	wct	-1.75	- 6.66 *
Total Energy	wc	-2.04	-6.85*
	wct	-2.74	-7.27*

Table-1. The ADF Unit Root Test Results

Notes: *, **, and *** indicate significant at 1%, 5%, and 10%, respectively. wc and wct are the test statistics for a unit root with a constant and with constant and trend. ADF lag lengths are selected based on Schwartz information criteria (SIC).

The order of the models parameters and thus the best fitted ARIMA models are selected based on Akaike information criterion (AIC). Figure 1 and Table 2 indicate that the ARIMA (1, 1, 1), ARIMA (0, 1, 0), ARIMA (0, 1, 0), ARIMA (1, 1, 2) and ARIMA (0, 1, 0) models give the smallest AIC for, an industry, transport, residential-commercial and public service, agriculture sectors and their total, respectively.

Energy Economics Letters	s, 2018, 5(1): 23-30
--------------------------	----------------------

						-						
Model	LogL	AIC	*	BIC	HQ		Model		LogL	AIC*	BIC	HQ
(1.1)(0.0)	200 622640	17 5 40	200 177	707021 17	1 600276	74.4	(0.0)(0.0)	E0 4	26110	2 440704	2 261105	2 410017
(1,1)(0,0)	-399.022010	17.548	509 17.7	707821 17	.008370		(0,0)(0,0)	58.1	30119	-2.440701	-2.301195	-2.410917
(0,2)(0,0)	400 005005	17.501	02 17.7	20795 17	.021349		(1,2)(0,0)	65.6	00026	2.432044	2.234076	-2.330303
(2,0)(0,0)	400.0000000	17.500	520 17.7	710709 17	620210		(4,4)(0,0)	50 A	25217	2 400702	2 200522	-2.200000
(1, 1)(0, 0)	200 017004	17.595	107 17.0	02052 17	670546		(0,1)(0,0)	50.4	20204	2.409792	2 206752	2.303117
(1,2)(0,0)	200 017274	17.005	102 17.0	03055 17	670562		(1,0)(0,0)	62.2	04225	2.400012	2 125026	2.301337
(0,3)(0,0)	200 040021	17.605	514 17.0	05200 17	690072		(4,1)(0,0) (1,2)(0,0)	60.0	94233 55637	2 200276	2.123020	-2.299600
(3,0)(0,0)	200 061227	17.000	010 17.0	05260 17	.000973		(1,3)(0,0)	50.0	25015	2.309370	2 220071	2 220616
(2,1)(0,0)	-399.901237	17.607	057 17.0	000770 17	712200		(0,2)(0,0)	50.9	40257	-2.300003	2.229071	-2.326310
(2,2)(0,0)	402 462442	17.023	DO/ 17.0	002370 17	113200		(2,0)(0,0)	50.0	40337	2.304303	-2.220301	-2.324790
(0,0)(0,0)	-403.403442	17.020	140 17.7	06351 1/	.036029		(1,1)(0,0)	56.7.	23100	-2.3/9208	-2.220230	-2.319/01
(4,1)(0,0)	-398.031/90	17.030	100 17.5	14430 17	.740407		(0,4)(0,0)	00.2	51499	-2.338/01	-2.120242	-2.209410
(1,0)(0,0)	-402.750540	17.041	001 17.7	00039 17	.060200		(1,4)(0,0)	50.0	10442	-2.332643	-2.0/45/4	-2.240003
(0,4)(0,0)	-399.908085	17.048	204 17.8	07002 17	737354		(2,1)(0,0)	50.9	42/40	-2.345337	-2.1403/1	-2.270878
(1,3)(0,0)	-399.910987	17.048	17.0 17.8	887083 17	737915		(3,0)(0,0)	58.9	41033	-2.345288	-2.140523	-2.270830
(4,0)(0,0)	-399.930919	17.649	170 17.8	887689 17	./38521		(0,3)(0,0)	58.9	3/16/	-2.345094	-2.146329	-2.2/0636
(2,3)(0,0)	-398.9311//	17.649	182 17.9	92/453 1/	.753424		(2,3)(0,0)	60.4	16887	-2.322473	-2.044202	-2.218231
(2,4)(0,0)	-398.339221	17.666	923 17.9	984947 17	.786057		(3,2)(0,0)	60.2	42624	-2.314897	-2.036625	-2.210655
(4,2)(0,0)	-398.630387	17.679	582 17.9	997607 17	.798716		(2,2)(0,0)	59.2	29043	-2.314306	-2.075788	-2.224956
(3,3)(0,0)	-398.641926	17.680	084 17.9	998108 17	799218		(4,0)(0,0)	59.0	45459	-2.306324	-2.067806	-2.216974
(3,4)(0,0)	-397.665119	17.681	092 18.0	38870 17	7.815118		(3,4)(0,0)	61.9	91516	-2.303979	-1.946201	-2.169953
(4,4)(0,0)	-396.705119	17.682	831 18.0	080362 17	7.831749		(3,1)(0,0)	58.9	61619	-2.302679	-2.064161	-2.213329
(4,3)(0,0)	-397.858580	17.689	503 18.0	047281 17	.823529		(4,2)(0,0)	60.5	84562	-2.286285	-1.968261	-2.167151
(3,2)(0,0)	-399.904711	17.691	509 17.9	969781 17	7.795751		(3,3)(0,0)	60.4	29461	-2.279542	-1.961517	-2.160408
(1,4)(0,0)	-399.914617	17.691	940 17.9	970211 17	7.796182		(4,3)(0,0)	61.3	92864	-2.277951	-1.920173	-2.143925
(3,1)(0,0)	-402.062648	17.741	854 17.9	980373 17	7.831205		(2,4)(0,0)	59.7	69999	-2.250870	-1.932845	-2.131736
		(2)	1			-19 B	3			(b)		
		(a)				- 5				(0)		200.00.000
Model	LogL	AIG	C*	BIC	HQ		Model		LogL	AIC*	BIC	HQ
(0,0)(0,0)	76.044055	-3.2193	07 -3.1	39801 -3	189523		(1,2)(0,0)	-312.0	036444	13.784193	13.982959	13.858652
(2,2)(0,0)	79.573893	-3.1988	65 -2.9	60346 -3	109514		(0,3)(0,0)	-312.2	290878	13.795256	13.994021	13.869714
(1,1)(0,0)	77.378145	-3.1903	54 -3.0	31342 -3	130787		(0,2)(0,0)	-313.4	450964	13.802216	13.961228	13.861783
(0,1)(0,0)	76.116163	-3.1789	64 -3.0	59704 -3	134288		(0,4)(0,0)	-311.9	942795	13.823600	14.062118	13.912950
(1,0)(0,0)	76.094882	-3.1780	38 -3.0	58779 -3	133363		(2,2)(0,0)	-312.0	021903	13.827039	14.065558	13.916390
(3,2)(0,0)	79.801879	-3.1652	99 -2.8	87028 -3	.061057		(1,3)(0,0)	-312.0	029049	13.827350	14.065868	13.916700
(2,3)(0,0)	79.767472	-3.1638	03 -2.8	85532 -3	.059561		(2,1)(0,0)	-313.4	425655	13.844594	14.043359	13.919052
(2,0)(0,0)	76.630163	-3.1578	33 -2.9	98821 -3	098266		(4,1)(0,0)	-311.3	717799	13.857296	14.135567	13.961538
(0,2)(0,0)	76.578860	-3.1556	03 -2.9	96590 -3	096036		(3.2)(0.0)	-311.7	726413	13.857670	14.135942	13.961912
(1,2)(0,0)	77.443359	-3.1497	11 -2.9	50946 -3	075253		(1,4)(0,0)	-311.7	738358	13.858189	14.136461	13.962432
(2,4)(0,0)	79.934350	-3.1275	80 -2.8	09556 -3	008447		(3,3)(0,0)	-310.8	837125	13.862484	14.180508	13.981618
(4,2)(0,0)	79.866746	-3.1246	41 -2.8	06617 -3	005507		(3.1)(0.0)	-312.9	917656	13.865985	14,104503	13.955335
(3.3)(0.0)	79.829299	-3.1230	13 -2.8	04988 -3	003879		(2 0)(0 0)	-315	430855	13 888298	14 047310	13 947865
(3.0)(0.0)	76.637968	-3.1146	94 -2.9	15929 -3	040236		(2,4)(0,0)	-311 (650783	13 897860	14 215885	14 016994
(2,1)(0,0)	76 633946	-3 1145	19 -2.9	15754 -3	040061		(4 2)(0 0)	-311	716991	13 900739	14 218763	14 019873
(0.3)(0.0)	76.596339	-3.1128	84 -2 9	14119 -3	038426		(3 4)(0 0)	-310	775390	13 903278	14 261055	14 037303
(4,3)(0,0)	80 455444	-3 1067	58 -2.7	48981 -2	972733		(1 1)(0 0)	-316	345196	13 928052	14 087064	13 987619
(4,0)(0,0)	76 796591	-3 0781	13 -2.8	30504 -2	988762		(1,1)(0,0)	-210.	405912	12 020697	14.007004	14.070605
(3 1)(0 0)	76 683972	-3 0732	16 -2.8	34698 -2	983866		(3,0)(0,0)	-315	424360	13 931/0/	14 130260	14 005052
(1,3)(0,0)	76 637767	-3 0712	07 -2.9	32689 -2	981857		(4,0)(0,0)	-314 4	600971	13 030172	14 177604	14.0005503
(0 4)(0 0)	76 610113	-3 0703	96 -2.0	31878 .2	981046		(4,0)(0,0)	-314.0	650000	13 0/1200	14.177091	14.020023
(4 1)(0 0)	76 700236	-3.0347	40 -2.0	56478 2	030507		(4,3)(0,0)	-311.0	200021	12.060510	14.299080	14.070334
(1 4)(0,0)	76 605016	-3.0347	57 _2.7	51986 .2	926015		(0, 1)(0, 0)	-310.4	230331	13.909519	14.060778	14.014194
(1,4)(0,0)	76.0303910	-3.0302	01 2.7	51900 -2	770465		(0,0)(0,0)	-319.	329240	13.9/083/	14.030343	14.000620
(4,4)(0,0)	76.022042	2.9134	24 24	72002 2	721606		(1,0)(0,0)	-319.0	043200	14.001079	14.121130	14.040554
(4,4)(0,0)	70.022042	-2.0705	24 -2.4	12995 -2	121000	-	(2,3)(0,0)	-319.,	398817	14.191253	14.409524	14.295495
		(c)								(d)		
		24	Model	LogL	é i	AIC	*	BIC	но	2		
(0,0)(0,0) 73.533935 -3.1101						1017	71 -3.03	80665	-3.0803	88		
			(0,1)(0,0)	73.948345	-3.0	847	11 -2.96	5451	-3.0400	35		
			(1,0)(0,0)	73.804027	-3.0	7843	36 -2.95	59177	-3.0337	61		
			(0,2)(0,0)	74.622009	-3.0	7052	22 -2.91	1510	-3.0109	55		
			(2,0)(0,0)	74.565450	-3.0	6806	63 -2.90	9051	-3.0084	96		

(e)

-3.063336 -3.054843

-3.040987

-3.026769 -3.025817

-3.022255 -3.022132

-3.015690

-3.011915 -2.997816

-2.990585 -2.985574

-2.982529

-2.979602 -2.977463

-2.968454

-2.947690

-2.890076 -2.803695 -2.864570 -2.816324

-2.842221

-2.828004

-2.783736

-2.697665 -2.733644 -2.759297

-2.752067 -2.747055

-2.704258

-2.621824 -2.579933

-2.650430

-2.669418

-2.611804 -2.445917 -2.988877 -2.965492 -2.966528 -2.952311 -2.951359

-2.951359 -2.932904 -2.962565 -2.896556 -2.907673 -2.908465

-2.901235 -2.896223

-2.878287 -2.845576 -2.828546

-2.849321

-2.843448

-2.785834 -2.669669

(1,2)(0,0) 75.456723 (2,2)(0,0) 76.261385 (0,3)(0,0) 74.942695

74.615694 74.593797

75.511857 73.509045

77.360868

76.274049 74.949764

74.783463 74.668192

75.598177 77.530847 78.481656

76.274452 76.274150

74.796868

(2,3)(0,0) 73.471744 (4,3)(0,0) 73.484976

(3,0)(0,0) (2,1)(0,0)

(1,3)(0,0)(1,1)(0,0)

(3,3)(0,0)

(3,2)(0,0) (0,4)(0,0)

(4,0)(0,0)(3,1)(0,0)

(1,4)(0,0)

(3,4)(0,0)(4,4)(0,0)

(4,2)(0,0)(2,4)(0,0)

(4,1)(0,0)

Figure-1. Model Selection Criteria Tables: (a) industry, (b) transport, (c) residential-commercial and public service, (d) agriculture, and (e) sectors total.

Energy Economics Letters, 2018, 5(1): 23-30

		-
Dependent Variable	ARIMA (p, d, q)	AIC
Industry	ARIMA (1, 1, 1)	17.55
Transport	ARIMA (0, 1, 0)	-2.44
Residential, Commercial and Public Service	ARIMA (0, 1, 0)	-3.22
Agriculture	ARIMA (1, 1, 2)	13.78
Sectors Total	ARIMA (0, 1, 0)	-3.11

Table-2. Evaluation of Various ARIMA Models Based on AIC

According to the study results, the energy consumptions of all the sectors are expected to increase by the end of 2030. Figure 2 (a) and Table 3 indicate that there is an ascending energy consumption of industry in Turkey with respect to forecasted industrial energy consumption values. The energy consumption of industry will continue to increase at an annual average rate of 1.59 % and will reach to 41 million toe in 2030 with 26.7 % increase from its value in 2015.

The energy consumption forecast in transport sector is presented in Figure 2 (b) and Table 3. It is expected that energy consumption of transport sector will rise 4.66 % on average in the next 15 years and will be over 49 million toe in 2030 with 98 % increase from its value in 2015. In the case of residential-commercial and public service sector's energy consumption, obtained results show that energy consumption will be over 50 million toe in 2030 (Figure 2 (c)) with an increase of 2.97 % at an annual average rate (Table 3). Its value in 2030 increases 55 % regarding its 2015 level.

Figure-2. Forecasted and actual values of energy consumption (toe) for sectors in Turkey: (a) industry, (b) transport, (c) residential-commercial and public service, (d) agriculture, (e) sectors' total energy consumption.

Energy Economics Letters, 2018, 5(1): 23-30

The energy consumption of agriculture sector will increase at the annual average rate of 2.46 % in the next 15 years and its value will be over 5 million toe in 2030 with 43.9 % increase with respect to its value in 2015 as shown in Figure 2 (d) and Table 3. According to the forecasted total energy consumption of all sectors, it is expected to ascend at the annual average rate of 3.93 % and will be over 166 million toe in 2030 with 78.3 % increase from its 2015 level (Figure 2 (e) and Table 3).

Table-3. Forecasted Sectoral Energy Consumption for Turkey (toe)							
			Residential-Commercial and				
Year	Industry	Transport	Public Service	Agriculture	Sectors' Total		
2016	32,599,424	26,098,590	33,289,681	4,169,712	97,216,398		
2017	33,005,255	27,315,354	34,278,910	4,415,435	101,038,370		
2018	33,504,651	28,588,845	35,297,534	4,558,161	105,010,599		
2019	34,060,746	29,921,708	36,346,428	4,665,785	109,138,993		
2020	34,651,198	31,316,713	37,426,490	4,761,447	113,429,690		
2021	35,262,470	32,776,754	38,538,647	4,853,033	117,889,072		
2022	35,886,358	34,304,866	39,683,853	4,943,230	122,523,771		
2023	36,517,890	35,904,221	40,863,089	5,032,953	127,340,679		
2024	37,154,055	37,578,141	42,077,367	5,122,514	132,346,958		
2025	37,793,027	39,330,102	43,327,729	5,212,021	137,550,055		
2026	38,433,701	41,163,742	44,615,246	5,301,509	142,957,707		
2027	39,075,405	43,082,870	45,941,022	5,390,990	148,577,956		
2028	39,717,733	45,091,472	47,306,195	5,480,470	154,419,159		
2029	40,360,441	47,193,718	48,711,936	5,569,949	160,490,004		
2030	41,003,377	49,393,974	50,159,449	5,659,427	166,799,518		

The prediction results imply that the energy policies of Turkey need continuously evolve to meet rising energy demand of its sectors. As a part of Vision 2023, the government set up number of action plans, energy targets for 2023, and strategies on renewable energy and energy efficiency to meet the country's environmental goals and to ease rising import dependence. The energy goals to 2023 consist of fostering domestic energy sources, such as a 30% share of renewable energy in the electricity mix, decreasing energy intensity by 20% below 2010 levels by improving efficiency, and building three nuclear power plants (International Energy Agency (IEA), 2016).

Regarding renewable energy sources, Turkey has a great potential of hydro, solar, geothermal, and wind power. In 2015, the share of renewable energy among all energy consumption in Turkey reached to the highest point with 5.4%. Therefore, the government needs to evaluate more renewable energy sources to reduce country's external energy dependency. In this context, the government should set clear and long-term targets for subsectors in order to use of renewable energy sources up to 2023 and 2030, which will provide visibility for investors (IEA, 2016).

Turkey has a considerable potential to save energy in sectoral base but this potential is not determined since monitoring and evaluation have not been done. Therefore, collection of data on energy efficiency and reporting is very important in this context. Energy efficiency seems a main policy to follow up to boost economic productivity and energy security. The government should adopt a policy of setting upper limit on energy consumption to make investment, similar the policies pursued in China. Turkey had significant development in setting up the legal framework on energy efficiency in energy labelling and buildings. The institutional and governance structure of energy efficiency policies should be strengthened. For instance, as in other International Energy Agency member countries, Energy Efficiency National Agency with a clear view to reinforcing and enabling efforts in this policy plan across sectors of the economy. Furthermore, the government should adopt the National Energy Efficiency Action Plan to set quantitative productivity targets for the sectors and evaluate the progress towards to these targets (IEA, 2016).

4. CONCLUSION

The aim of this study is to predict energy consumptions of four sectors and their total for Turkey from 2016 to 2030. The historical data of sectoral energy consumptions are used from 1970 to 2015 and univariate ARIMA models are carried out for predictions. The best fitted ARIMA models are chosen according to AIC values among the estimated ARIMAs. The results indicate that sectoral-based energy consumption of Turkey will ascend permanently. Energy needs for industry, transport, residential-commercial and public service and agriculture sectors and their total will continue to increase at an annual average rate of 1.59 %, 4.66 %, 2.97 %, 2.46 % and 3.93 %, respectively in the next 15 years.

The predicted results present a guide for Turkey to determine energy strategy, policy and planning in the next 15 years. Turkey's energy strategy should be as follows; to ascend the ratio of renewable energy by allocating more resources to research and development on energy technologies on drilling, battery, sun panels, etc., to set long-term targets for subsectors of the economy in order to use of renewable energy sources, to reinforce governance structure of energy efficiency, to set quantitative productivity targets for the sectors of the economy and evaluate the progress towards the determined targets.

Funding: This study received no specific financial support.Competing Interests: The authors declare that they have no competing interests.Contributors/Acknowledgement: Both authors contributed equally to the conception and design of the study.

REFERENCES

- Azadeh, A., S. Ghaderi and S. Sohrabkhani, 2008. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Conversion and Management, 49(8): 2272-2278. Available at: https://doi.org/10.1016/j.enconman.2008.01.035.
- Bilgili, M., B. Sahin, A. Yasar and E. Simsek, 2012. Electric energy demands of Turkey in residential and industrial sectors. Renewable and Sustainable Energy Reviews, 16(1): 404–414. Available at: https://doi.org/10.1016/j.rser.2011.08.005.
- Box, G.E.P. and G.M. Jenkins, 1976. Time series analysis: Forecasting and control. Oakland, CA: Holden-Day.
- Box, G.P.E. and G.M. Jenkins, 1970. Time series analysis: Forecasting and control. San Francisco: Holden Day.
- Cabral, D.A.J., L.F.L. Legey and M.V. De Freitas Cabral, 2017. Electricity consumption forecasting in Brazil: A spatial econometrics approach. Energy, 126: 124-131. Available at: https://doi.org/10.1016/j.energy.2017.03.005.
- Chai, J., Q.-Y. Lu, S.-Y. Wang and K.K. Lai, 2016. Analysis of road transportation energy consumption demand in China. Transportation Research Part D: Transport and Environment, 48: 112-124. Available at: https://doi.org/10.1016/j.trd.2016.08.009.
- Dilaver, Z. and L.C. Hunt, 2011. Modelling and forecasting Turkish residential electricity demand. Energy Policy, 39(6): 3117-3127. Available at: https://doi.org/10.1016/j.enpol.2011.02.059.
- Dilaver, Z. and L.C. Hunt, 2011. Industrial electricity demand for Turkey: A structural time series analysis. Energy Economics, 33(3): 426-436. Available at: https://doi.org/10.1016/j.eneco.2010.10.001.
- Ghedamsi, R., N. Settou, A. Gouareh, A. Khamouli, N. Saifi, B. Recioui and B. Dokkar, 2016. Modeling and forecasting energy consumption for residential buildings in Algeria using bottom-up approach. Energy and Buildings, 121: 309-317. Available at: https://doi.org/10.1016/j.enbuild.2015.12.030.
- Hamzaçebi, C., 2007. Forecasting of Turkey's net electricity energy consumption on sectoral bases. Energy Policy, 35(3): 2009-2016. Available at: https://doi.org/10.1016/j.enpol.2006.03.014.
- Hussain, A., M. Rahman and J.A. Memon, 2016. Forecasting electricity consumption in Pakistan: The way forward. Energy policy, 90: 73-80. Available at: https://doi.org/10.1016/j.enpol.2015.11.028.
- International Energy Agency (IEA), 2016. Energy policies of IEA countries: Turkey Available from https://webstore.iea.org/energy-policies-of-iea-countries-turkey-2016-review [Accessed 05.05.2017].

- Jobert, T. and F. Karanfil, 2007. Sectoral energy consumption by source and economic growth in Turkey. Energy Policy, 35(11): 5447-5456. Available at: https://doi.org/10.1016/j.enpol.2007.05.008.
- Karaaslan, A. and M. Gezen, 2017. Forecasting of Turkey's sectoral energy demand by using fuzzy grey regression model. International Journal of Energy Economics and Policy, 7(1): 67-77.
- Li, D.-C., C.-J. Chang, C.-C. Chen and W.-C. Chen, 2012. Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case. Omega, 40(6): 767-773. Available at: https://doi.org/10.1016/j.omega.2011.07.007.
- Liu, X., B. Moreno and A.S. García, 2016. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors. Energy, 115: 1042-1054. Available at: https://doi.org/10.1016/j.energy.2016.09.017.
- Pukšec, T., G. Krajačić, Z. Lulić, B.V. Mathiesen and N. Duić, 2013. Forecasting long-term energy demand of croatian transport sector. Energy, 57: 169-176. Available at: https://doi.org/10.1016/j.energy.2013.04.071.
- Sen, P., M. Roy and P. Pal, 2016. Application of arima for forecasting energy consumption and ghg emission: A case study of an indian pig iron manufacturing organization. Energy, 116: 1031-1038. Available at: https://doi.org/10.1016/j.energy.2016.10.068.
- Sözen, A., 2009. Future projection of the energy dependency of Turkey using artificial neural network. Energy Policy, 37(11): 4827-4833. Available at: https://doi.org/10.1016/j.enpol.2009.06.040.
- Sözen, A., Z. Gülseven and E. Arcaklioğlu, 2007. Forecasting based on sectoral energy consumption of GHGs in Turkey and mitigation policies. Energy Policy, 35(12): 6491-6505. Available at: https://doi.org/10.1016/j.enpol.2007.08.024.
- Turkish
 Statistical
 Institute,
 2013.
 Ankara,
 Turkey.
 Available
 from

 http://www.turkstat.gov.tr/PreHaberBultenleri.do?id=15844 [Accessed 04.05.2017].
- Yuan, C., S. Liu and Z. Fang, 2016. Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM (1, 1) model. Energy, 100: 384-390. Available at: https://doi.org/10.1016/j.energy.2016.02.001.

Views and opinions expressed in this article are the views and opinions of the author(s), Energy Economics Letters shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.