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ABSTRACT

This study develops a robust methodological framework for measuring and analyzing
multidimensional energy poverty using unit-level household survey data. The approach
integrates logistic principal component analysis (Logistic PCA) to construct a
composite index that assigns unequal weights to diverse energy deprivation indicators,
thereby capturing the heterogeneity and complexity of energy poverty more accurately
than equal-weight methods. The index is further disaggregated into moderate and
severe categories, enabling a nuanced assessment of deprivation intensity. To
complement the measurement stage, artificial intelligence techniques specifically
multilayer perceptron (MLP) and artificial neural networks (ANN) are employed to
model the socio-demographic and economic determinants of energy poverty. This dual-
stage design allows for both explanatory and predictive insights: the statistical

( modeling validates the significance of key predictors such as household wealth, family
S‘Z?OW; 32; Ca5; C38; Reo; size, and access to basic amenities, while the Al models enhance predictive accuracy for
identifying high-risk households and regions. By combining unequal-weight composite
measurement with Al-driven predictive modeling, the framework offers a scalable and
transferable tool for researchers and policymakers. It facilitates targeted, data-driven
interventions aimed at reducing energy poverty and promoting equitable energy access.
The methodological innovations presented here are adaptable to diverse contexts,
making them valuable for comparative studies and policy applications beyond the
specific dataset used.

Contribution/ Originality: This study contributes to multidimensional energy poverty research by applying
Logistic Principal Component Analysis (LOGPCA) to binary variables for unequal indicator weighting. It further
employs a Multi-Layer Perceptron (MLP) artificial intelligence model, making it one of the few studies to do so and

the first using NIFHS-5 exclusively.

1. INTRODUCTION

Energy poverty refers to the lack of access to affordable, reliable, and clean energy, and it significantly impacts
various dimensions of human well-being, including health, education, and economic productivity. It manifests
through inadequate electricity access, absence of modern cooking facilities, and limited heating and cooling
solutions. Conceptually, energy poverty can be understood through either a unidimensional or multidimensional
lens. While unidimensional measures focus on singular aspects such as electricity availability or energy expenditure
multidimensional approaches incorporate a broader range of factors, including the availability, reliability,
affordability, and efficiency of energy services (Alkire & Foster, 2011; Nussbaumer, 2011). Although unidimensional
measures offer simplicity, they often fail to capture the complex and interconnected nature of energy deprivation

(Sen, 1999).
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In India, energy poverty remains a persistent challenge, especially in states like West Bengal (Acharya &
Sadath, 2019; Manasi & Mukhopadhyay, 2024; Teja, 2024). Despite national-level progress in electrification, many
households continue to face unreliable supply, unaffordable tariffs, and inadequate infrastructure (Raji¢ et al., 2020).
Rural regions, in particular, are disproportionately affected due to infrastructural gaps, leading to continued
dependence on traditional biomass fuels such as firewood, kerosene, and cow dung (Bhide & Monroy, 2011; Lan,
Khan, Sadiq, Chien, & Baloch, 2022). Moreover, socio-economic barriers including poverty, unemployment, and
limited awareness of clean energy technologies exacerbate the issue. Gender disparities further compound energy
poverty, as women and girls often bear the burden of fuel collection and household energy management (Abbas et
al., 2022).

Addressing multidimensional energy poverty thus requires an integrated strategy that combines energy access
with broader social and economic development. Policy interventions such as subsidies for clean energy technologies,
expansion of decentralized renewable energy systems, and promotion of energy-efficient appliances can significantly
enhance energy security for marginalized populations (Bhide & Monroy, 2011). Moreover, community-level
initiatives focusing on capacity building and awareness generation can support the long-term sustainability of these
efforts.

To effectively identify and address the drivers of energy poverty, advanced analytical tools are essential. One
such method is the use of artificial intelligence, particularly Multilayer Perceptrons (MLPs), a class of artificial
neural networks capable of modeling complex, non-linear relationships. MLPs are increasingly used in the social
sciences for classification, regression, and predictive analytics. In the context of energy poverty, MLPs can process
large datasets to uncover hidden patterns and forecast deprivation levels based on historical energy usage and
socio-economic variables (Abbas et al., 2022). This makes them powerful tools for supporting evidence-based
policymaking.

Given this context, the present study aims to assess the extent of multidimensional energy poverty across the
districts of West Bengal using unit-level data from NFHS-5 (2019-21). We employ logistic principal component
analysis to construct a weighted multidimensional energy poverty index, which is then categorized into moderate
and severe levels to better capture the intensity of deprivation. Furthermore, we utilize artificial intelligence
techniques, particularly MLP models, to identify the key socio-demographic and economic factors influencing
energy poverty in the region. By combining statistical rigor with machine learning, this study seeks to provide
deeper insights into the structure of energy poverty and offer actionable recommendations for targeted

interventions.

2. LITERATURE REVIEW

P. F. F. Nussbaumer (2011) emphasized the importance of developing and applying metrics to measure energy
poverty in order to inform policy-making is emphasized. They introduced the Multidimensional Energy Poverty
Index (MEPI-equal weight) as a tool to evaluate energy poverty at different levels. The MEPI focuses on the
incidence and intensity of energy poverty, utilizing detailed household survey data for analysis. It is noted that the
MEPI is just one instrument among others in monitoring progress and designing effective policies to address
energy poverty (Nussbaumer, 2011).

Pelz, Pachauri, and Groh (2018) the measurement of energy poverty has evolved from a binary perspective to a
multidimensional approach, with the development of frameworks like the Multitier Framework (MTF). However,
there are challenges in operationalizing the MTF at the global tracking level and gaining acceptance in national
energy planning. The accurate measurement of access to basic household energy services at the global level requires
further work, drawing lessons from debates on defining and estimating basic needs in other domains. There is a
need for clearer separation of global and national tracking objectives, capturing dynamic movements in and out of
energy poverty, and addressing intrahousehold distributions and vulnerabilities, particularly for women and
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children. Collecting sex- and age-disaggregated data is important for better understanding and addressing these
vulnerabilities. Overall, the value of any metric lies in its ability to inform policies that deliver the greatest welfare
benefits, and multidimensional frameworks like the MTF are making progress in this regard (Pelz et al., 2018).

Halkos and Aslanidis (2023) analyzed energy poverty (EP) is a complex issue that requires a multidimensional
approach for effective monitoring and eradication. Here are key aspects they considered across different bases like
theoretical basis, environmental basis, institutional basis, technical basis, socioeconomic basis, and multidimensional
basis. They stressed that consensual and expenditure-based approaches are crucial for framing energy poverty.
Defining what energy poverty truly means is essential for fostering public participation, strengthening democratic
decision-making, and promoting public participation. Institutional cooperation is necessary to integrate Green Deal
goals and combat corruption. Addressing social exclusion and inflation due to war is crucial to minimize the impacts
on energy poverty. Considering energy-related apeirophobia in discussions is important. Energy poverty creates
vicious circles impacting affordability and accessibility. Monitoring these dimensions is critical in both developed
and developing countries. Collaboration and Green Deals can offer a cohesive policy framework to address energy
poverty effectively (Halkos & Aslanidis, 2023).

Sadath and Acharya (2017) assessed energy poverty in India using household-level primary data from the India
Human Development Survey-II (IHDS-II), 2011-12. From this, they revealed extensive energy poverty in rural
areas where traditional biofuels are heavily relied upon. Their key points from the assessment are: Dalits, Adivasis,
and marginalized sections are most affected; women spend significant time and energy on collecting and using solid
biofuels, impacting labor market participation and causing health issues due to indoor pollution among women and
children; energy poverty is multidimensional and should be evaluated using a theoretical framework like Amartya
Sen's capability approach with a Multidimensional Energy Poverty Index (MEPI) (Sadath & Acharya, 2017).

Acharya and Sadath (2019) discussed Access to modern energy resources plays a crucial role in promoting the
welfare of society globally. Electrified households enable children to study comfortably at night, contributing to
better educational outcomes. Electrification enhances security, especially for women and girls, while access to LPG
improves health outcomes by reducing health risks associated with traditional biofuels. Transitioning to clean
energy sources like LPG not only ensures healthier cooking practices but also frees up time for women and girls to
engage in other productive activities. Energy security is vital for sustaining life, particularly in cold regions, and is
essential for industrial economies to promote manufacturing and generate employment opportunities. The study
examined the extent of energy poverty in India and its relationship with economic development between 2004—05
and 2011-12. Despite progress, a significant portion of the population, especially in poor states, still lacks access to
modern energy services, suggesting the need for further interventions (Acharya & Sadath, 2019).

Bhide and Monroy (2011) pointed out that access to clean energy is crucial for sustainable development,
particularly in India, where a significant percentage of the global poor reside. Given that most of India's poor live in
rural areas, enhancing access to energy sources in these regions is paramount for development and poverty
reduction. Despite various government programs and initiatives, there are challenges in meeting development goals
and reducing energy poverty. Unrealistic targets highlight the need for increased efforts, especially in promoting
renewable energy technologies (Bhide & Monroy, 2011).

Lan et al. (2022) examined the energy poverty in five Asian countries and revealed insights into energy access
and its implications. Sri Lanka and Bangladesh face higher levels of energy poverty compared to India and Pakistan.
Pakistan and India rely significantly on imported oil, while Bangladesh has reduced its dependence on imported oil
over the past decade. A significant portion of India's population lacks access to modern cooking methods,
contributing to energy poverty. Factors like access to electricity, clean fuels for cooking, and private investment in
energy show significant relationships with the energy poverty index in all countries (Lan et al., 2022).

Nussbaumer's (2011) analysis contributes significantly to the field in two main ways: the MEPI methodology
and the global application of MEPI. The study conducted a cross-country analysis of energy poverty at an
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aggregated level, emphasizing the diversity of energy poverty landscapes between countries. By analyzing the
evolution of energy poverty over time using the latest data, the study identifies positive trends in reducing energy
poverty intensity in selected sub-Saharan countries. The MEPI not only assesses the incidence of energy poverty
but also provides insights into the intensity of energy poverty, showcasing improvements in all countries analyzed.
Exploring the connection between MEPI results and policy analysis can help identify effective policies and
strategies to address energy poverty (Nussbaumer, 2011).

Abbas et al. (2022) measured and analyzed extreme multidimensional energy poverty in developing countries
using the Multidimensional Energy Poverty Index (MEPI) and identified key socioeconomic determinants through
supervised machine learning. The MEPI highlighted widespread severe energy poverty across Asian and African
countries, with specific nations like Afghanistan, Yemen, Nepal, India, and others being particularly susceptible.
Machine learning algorithms identified significant socioeconomic factors influencing multidimensional energy
poverty, including household wealth, housing characteristics, marital status of breadwinners, and their residential
location. The study emphasized that a combination of various socioeconomic variables, such as income, education,
and employment nature, collectively contributes to multidimensional energy poverty rather than a single factor. In
conclusion, the study underscores the importance of addressing severe energy poverty by targeting basic energy
services, enhancing household socioeconomic status, and promoting universal access to modern energy sources.
Implementing these policy directions can lead to significant reductions in energy poverty and improve overall well-

being for communities affected by energy deprivation (Abbas et al., 2022).

3. DATA AND METHODOLOGY

In this present study, we used unit-level household data from the National Family Health Survey 5 (NFHS-5)
for the period 2019-2021 for the districts of West Bengal. We also used reports such as Energy Statistics 2020 by
the Government of India (India, 2020) and Key World Energy Statistics 2020 (International Energy Agency, 2020).
West Bengal's Energy Transition (Teja, 2024) for the study. Statistical packages used for data preparation and
estimation include R-Programme 4.3.3, SPSS 26, and Microsoft Excel 365.

For the estimation of Multidimensional Energy Poverty (MEP), we followed the methodology proposed by the
Oxford Poverty & Human Development Initiative (OPHI) (Nussbaumer, 2011). We considered five dimensions of
energy poverty, which are Cooking (D-1), Lighting (D-2), Telecommunication (D-3), Education/Entertainment (D-
4), and Household Appliances (D-5). Then, we used multiple indicators to acknowledge these dimensions. The
indicators are Type of Fuel used for cooking (I), Separate Kitchen (II), Electricity Access (III), Mobile/Landline
(IV), Radio (V), Television (VI), Computer (VII), Fan (VIII), Bike (IX), Fridge (X), and Water Pump (XI) (Manasi &
Mukhopadhyay, 2024 (Table 1).

Table 1. Dimensions and indicators used for estimating MEP with unequal weights by logistic PCA.

Dimensions Indicators Cause of deprivation Unequal weights by
LOGPCA
Cooking (D-1) Type of fuel used for cooking (I) If unclean fuel is used 0.0979
Separate kitchen (II) If no such kitchen is 0.1051
available
Lightning (D-2) Electricity access (III) No access to electricity 0.0597
Telecommunication (D-3) Mobile/ landline (IV) Not having mobile or 0.0597
landline
Education/ Entertainment | Radio (V) Not having radio 0.1104
(D-4) Television (VI) Not having television 0.084:9
Computer (VII) Not having computer 0.0950
Household appliances (D-5) | Fan (VIII) Not having electric fan 0.0849
Bike (IX) Not using motorbike 0.1025
Fridge (X) Not having refrigerator 0.0998
Water Pump (XI) Not having water pump 0.1004
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Most of the studies used equal weights for the estimation of MEP, which is quite logical but not always
effective due to its heavy dependence on standard theory, which may or may not be perfectly applicable to different
regions. Additionally, some studies have used an unequal weighting system to achieve region-specific accuracy,
primarily utilizing Principal Component Analysis (PCA) (Manasi & Mukhopadhyay, 2024). PCA is generally
suitable for continuous variables, not categorical variables. As in our study, most variables were categorical
(especially with binary outcomes); hence, PCA is not very effective for obtaining weights of the variables. For this
study, we used Logistic Principal Component Analysis (LOGPCA).

Logistics Principal Component Analysis (Das, 2021) is a multivariate generalization of the so-called Bernoulli
distribution. The Bernoulli distribution for a univariate binary random variable:

P(xlp) =p*(1—p)'™* (1)
Where x € {0,1} with p as the mean. We can write this distribution in terms of the log-odds, where the

parameter.

0 = log (&) (2)

So, the logistic function.

o@ = [1+e7] (3)

Now the Bernoulli distribution becomes.

P(x|0) = a(0)*a(—0)** (4)

The above expression is considered as the Bernoulli distribution expressed as a member of the exponential
family. A generalization of the above equation gives us the Logistic Principal Component Analysis model (Landgraf,
2016; Schein, Saul, & Ungar, 2003).

Assuming there is a d-dimensional binary data set with n observations, the matrix notation would be: (xij)nxd'
If x;; is an element with Bernoulli probability p;;, then the parameter 6;; is the logit of the probability.

0y = log (L) )

There are three major types of logistic principal component analysis, which are Exponential Family PCA,
Logistic PCA, and Convex Logistic PCA.

Collins suggested exponential family PCA mainly for binary variables. The assumption made by Collins was
that the logit of the probability matrix is presumed as a matrix factorization.

logit(P) = k,u" + ABT  (6)

Here A & B are the lower rank, k & p are vectors of dimension d of main effects (Collins, Dasgupta, & Schapire,
2001; Landgraf, 2016).

Landgraf extends Pearson’s Principal Component Analysis. Pearson’s idea was to find a rank-k projection that
minimizes the mean squared error of the data, which may be very close to the original data. In notation, it

minimizes.
1
Ll — 1) — UUT G~ wIE (1)

Over [ and nxd orthonormal matrix U., The Logistic PCA extends PCA for binary data, using the projection
of the natural parameters from the Bernoulli saturated model, which minimizes the Bernoulli deviance. According
to Landgraf, letting the d-dimensional vector of natural parameters from the Bernoulli saturated model that is 6;

estimated by
bi=pn-UUT(6:—n) (3

Where p and U are solved for minimizing the Bernoulli deviance.

D(0) =¥, 2%, —2x;;0;; + 2log (1 + exp(@ij)) (9)
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The logistic PCA model has three important benefits over the exponential family PCA: these are:
(1) The number of parameters does not increase with the number of observations.
(if) The principal component scores can be interpreted easily as linear functions of the data.
(i) Lastly, only the matrix multiplication is needed when using new data for PCA (Landgraf, 2016; Landgraf &
Lee, 2020).

The Convex Logistic PCA is very similar to Logistic PCA. Here, in the Convex Logistic PCA, minimization is
performed over the convex hull' of rank k projection matrices rather than minimization over rank k projection
matrices. Convex Logistic PCA can be solved more quickly and reliably (Landgraf & Lee, 2020). It is primarily
developed for categorical variables (Das, 2021). By using LOGPCA, we have estimated the unequal weights for
different indicators under different dimensions (Table 1).

After obtaining the unequal weights, cut-offs are to be fixed. Using the unequal weights, we obtained the

Multidimensional Energy Poverty Score (MEP Score) for each individual. Then, we proceed as follows:

__ Y {MEP Score; x(HS)}
WtMean(MEP Score) — - ST HS, (10)
i=1 i

This is the weighted mean of MEP Score and the weights we used is the family size of the households (HS;).

2
_ E?:l{(HSi)X(MEP Score;~Wtymean(MEP Score)) }
WtSd(MEP Score) — Y HS; (1 1)
i=1 L

Now we have the weighted standard deviation of MEP Score, here also used the family size of the households
as weights. We used WtMean(MEp score) & Wtsd(MEP score) to determine Moderate Multidimensional Energy
Poverty & Severe Multidimensional Energy Poverty cut-offs as follows:

MODMEP, = Wiyeanmep scorey — 0-5 X Wisqmep score)
SEVMEP, = Wiyeanmep score) — 0-5 X Wisqamep score)

Here MODMEP, = 0.4529 (Moderate Multidimensional Energy Poverty « cut-off) & SEVMEP, = 0.6300
(Severe Multidimensional Energy Poverty o« cut-off) are the estimated MEP cut-offs and the value of & is 0.5. Now
for identification, we used the cut-offs as follows: if the Multidimensional Energy Poverty Score (MEP Score) of a
household is greater than or equal to 0.4529, then we consider that household to be experiencing Moderate
Multidimensional Energy Poverty. Conversely, if the MEP Score is greater than or equal to 0.6300, then the
household is considered to be experiencing Severe Multidimensional Energy Poverty.

After cut-offs, we estimated the Moderate and Severe MEP Headcount Ratios (MEPHCR) and Average
Intensity (MEPAVGINT) for the districts of West Bengal. We followed the methodology proposed by OPHI for
Multidimensional Poverty, as outlined by Alkire & Foster (2011).

MODMEPI = MODMEPHCR X MODMEPAVGINT
SEVMEPI = SEVMEPHCR X SEVMEPAVGINT

Where MODMEPI and SEVMEPI are the Moderate and Severe Multidimensional Energy Poverty Indices;
MODMEPHCR and SEVMEPHCR are the Moderate and Severe Multidimensional Energy Poverty Headcount
Ratios; MODMEPAVGINT and SEVMEPAVGINT are the Moderate and Severe Multidimensional Energy
Poverty Average Intensities.

Now for the identification of socio-demographic determinants of MEP, we used different socio-demographic
and economic variables: House (V1), Wealth (V2), Education (V8), Family Size (V4), Marriage (V5), Status (V6),
Residence (V7), Sex (V8), Age (V9), Caste (V10), and Smoking (V11) (Abbas et al., 2022) (Table 3). To estimate the

importance of these socio-demographic and economic variables in energy poverty we used Multilayer Perceptron

' Convex hull is the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the

subset. In PCA for clustering of points a convex hull is the smallest polygon that includes all the points of a given level.
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Model (MLP) under artificial neural network (Abbas et al., 2022; Bagheri, Taridashti, Farahani, Watson, & Rezvani,
2023). A neural network is a computer program that can identify patterns in data sets and perform tasks faster than
average programs. It learns to predict data outcomes by analyzing thousands of examples. Multi-layer perceptrons
(MLPs) are composed of interconnected perceptrons, each with weights that affect the network's outcome. MLPs
are also known as feedforward artificial neural networks (Raji¢ et al., 2020). For our MLP, we have a total of eleven
variables, of which eight are factors (categorical) and the remaining three are covariates (continuous). We used two
hidden layers, with the activation functions being hyperbolic tangent (for inputs) and sigmoid (for output). We
considered the MEP score as our output variable (Table 6). The architecture of the Multi-Layer Perceptron (MLP)
model used to estimate the Multidimensional Energy Poverty (MEP) score consists of 81 input variables, including
categorical indicators such as wealth, education, marital status, residence, caste, smoking habits, household
characteristics, and demographic attributes. These inputs are processed through two hidden layers one with 11
neurons and another with 9 neurons both activated using the hyperbolic tangent function. The final output layer
generates the MEP score, with a sigmoid activation function ensuring values remain bounded between 0 and 1.
This design enables the model to capture complex, nonlinear relationships among socioeconomic and demographic

variables in predicting energy poverty (Figure 4.

4. RESULTS AND DISCUSSION

We subdivided this section into two parts: the first part presents the energy poverty estimates of the districts of
West Bengal, and the second part provides a predictive analysis of the socio-demographic and economic factors
influencing energy poverty in West Bengal using a multilayer perceptrons model under an artificial neural network.

As mentioned in the data & methodology section, we used two types of multidimensional energy poverty
(MEP) estimates: moderate and severe. For both cases, we estimated the headcount ratio and average intensity. For
moderate MEP, Puruliya (0.8838) and Kolkata (0.3948) were the two districts with the lowest and highest
headcount ratios among the districts of West Bengal, respectively. Meanwhile, for the entire state of West Bengal,
approximately 74% of households were multidimensionally energy poor at the moderate level. Similarly, for severe
MEP, Puruliya (0.6382) and Kolkata (0.0671) were the two districts with the lowest and highest estimates of
headcount ratios among all districts of West Bengal. About 34% of households experienced severe multidimensional
energy poverty.

Let us focus on the average intensities of MEPs. We found a similar picture to headcount ratios. Here, also,
Puruliya and Kolkata were the two districts with extreme levels of unequal energy poverty for both moderate and
severe categories. An average energy-poor household in the state experiences approximately 63% and 72%
intensities for moderate and severe energy poverty, respectively.

We estimated the MEPIs of moderate and severe levels. The same results were obtained as with the headcount

ratios and average intensities (Table 2).

Table 2. District-wise different multidimensional energy poverty estimates of West Bengal during 2019-2021.

Districts Moderate Moderate Severe Severe Moderate Severe
MEPHCR MEPAVGINT MEPHCR MEPAVGINT MEPI MEPI
Bankura 0.8369 0.6695 0.4994 0.7465 0.5603 0.3728
Bardhaman 0.6732 0.634 0.301 0.733 0.4268 0.2207
Birbhum 0.8091 0.6323 0.4056 0.708 0.5116 0.2872
Daskshin 0.8076 0.624 0.8533 0.7117 0.5039 0.2514
Dinajpur
Darjeeling 0.7038 0.6099 0.2461 0.7267 0.4292 0.1788
Howrah 0.6037 0.5999 0.1779 0.715 0.3622 0.1272
Hugli 0.6626 0.6195 0.2623 0.7224 0.4104 0.1895
Jalpaiguri 0.704 0.6177 0.272 0.7238 0.4349 0.1969
Koch Bihar 0.8391 0.6149 0.3543 0.7002 0.516 0.2481
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Districts Moderate Moderate Severe Severe Moderate | Severe
MEPHCR MEPAVGINT MEPHCR MEPAVGINT MEPI MEPI

Kolkata 0.3948 0.5731 0.0671 0.7064 0.2262 0.0474

Maldah 0.8112 0.6281 0.3842 0.7071 0.5095 0.2716

Murshidabad 0.8364 0.6368 0.4829 0.7186 0.5326 0.309

Nadia 0.7563 0.6201 0.3362 0.6994 0.4689 0.2351

North 24

PGNS 0.5552 0.5941 0.2089 0.692 0.3298 0.1445

Paschim 0.878 0.6626 0.5198 0.785 0.5818 0.382

Medinipur

Purba 0.8786 0.6391 0.4708 0.7044 0.5615 0.8316

Medinipur

Puruliya 0.8838 0.7278 0.6382 0.7928 0.6432 0.506

South 24

PGNS 0.7492 0.6121 0.3064 0.7005 0.4585 0.2146

Uttar Dinajpur 0.8134 0.6267 0.3905 0.7059 0.5098 0.2756

West Bengal 0.7438 0.6324 0.3465 0.7282 0.4704 0.2506

Source: Authors own calculation from NFHS-5 (2019-21) unit level household data.

We observed that districts (Howrah, Hugli, North 24 PGNS, South 24 PGNS) sharing borders with Kolkata

had low energy poverty. As we move further from Kolkata, energy poverty increases. We also found that the

extreme northern districts of West Bengal, such as Darjeeling, Jalpaiguri, and Cooch Behar, have less energy

poverty (Figure-1, 2, 3).
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Figure 1. (a) Moderate MEPHCR & (b) Moderate MEPAVGINT of the Districts of West Bengal for the period 2019-21.

Source: Authors own calculation from NFHS-5 (2019-21) unit-level household data.

MOD_MEPAVG
072

0.68
0.64

0.60

133



Energy Economics Letters, 2025, 12(2): 126-141

Severe MEP Headcount ratio of the districts of West Bengal 2020-21
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Figure 2. (a) Severe MEPHCR & (b) Severe MEPAVGINT of the Districts of West Bengal for the period 2019-21.

Source: Authors own calculation from NFHS-5 (2019-21) unit-level household data.
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Figure 3. (a) Moderate MEPI & (b) Severe MEPI of the Districts of West Bengal for the period 2019-21.

Source: Authors own calculation from NFHS-5 (2019-21) unit-level household data.
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Figure 5. Normalized importance of independent variables by MLP.

Source: Authors own calculation from NFHS-5 (2019-21) unit-level household data.

In continuation of our discussion, we move to the second sub-section of this section, which is the analysis of the
predictive model for the determination of socio-demographic and economic factors responsible for energy poverty in
West Bengal for the period 2019-20. We used eleven socio-demographic and economic variables as input and the
multidimensional energy poverty scores as the output for the multilayer perceptrons model of an artificial neural
network (Table 3). Input variables were mostly skewed in their raw nature (Table 4). So, we needed to standardize
them to achieve better and more efficient results. The sample size was 18,187 for the entire state of West Bengal.
Out of this, we used 12,754 (70.10%) for training and 5,433 (29.90%) for testing (Table 5). We used normalization
as a rescaling method for scale-dependent variables (Table 6). The relative error for training was 0.2942, and for
testing was 0.3040. These were quite low, implying a high level of significance of the model (Table 7). The plotted
graph between the predictive value and the MEP_SCORE is quite significant as the fitted regression line having
R2=0.703, means near about more than 70% good fit (Figure 6). Also, the graph of residuals by predicted values
shows an insignificant fit, as the R2 value is very low, indicating almost no relation between residuals and the

predicted values (Figure 7).

Table 3. Variables for the predictive model by MLP.

Category | Variables Definition

House (V1) No. of rooms used for Sleeping
Wealth (V2) Wealth Index (grouped)
Education (V3) Household head's educational attainment
Family Size (V4) No. of Household members
Marriage (V5) Is the household head currently married or not?

Input Status (V6) Ownership status of the house
Residence (V7) Place of residence Rural/Urban
Sex (V8) Household head's Sex
Age (V9) Household head's age
Caste (V10) The household head belongs to a social group.
Smoking (V11) Household head's smoking habits

Output MEP Scores Multidimensional Energy Poverty (MEP) scores for each household
range between 0 and 1.
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Table 4. Statistical summary of the input variables.

Minimum Maximum Mean Std. Deviation Skewness
HOUSE V1 0.0000 25.0000 1.9229 1.0944 5.1247
WEALTH_V2 1.0000 5.0000 2.3069 1.2758 0.6337
EDUCATION_Vs 0.0000 8.0000 1.2865 0.9828 0.3346
FAMILY_SIZE V4 1.0000 19.0000 4.0864 1.8007 1.1802
MARRIAGE_V5 0.0000 2.0000 1.0964 0.8748 1.0428
STATUS V6 0.0000 1.0000 0.4215 0.4938 0.3179
RESIDENCE V7 1.0000 2.0000 17008 0.4579 -0.8770
SEX V8 1.0000 2.0000 1.1597 0.3664 1.8578
AGE_V9o 15.0000 98.0000 48.4692 13.8949 0.2832
CASTE V1o 1.0000 8.0000 3.9201 2.6542 0.5311
SMOKING_V11 0.0000 8.0000 0.5546 0.5528 2.3819
Table 5. Results of case processing summary.
Case Processing Summary
N Percent
Sample Training 12754 70.10%
Testing 5433 29.90%
Valid 18187 100.00%
Excluded 0
Total 18187
Table 6. Results of network information.
Network information
Input layer Factors 1 WEALTH V2
2 EDUCATION_V3
3 MARRIAGE_Vs5
4 STATUS Ve
5 RESIDENCE_V7
6 SEX_Vs
7 CASTE_V1o
8 SMOKING_V11
Covariates 1 HOUSE_V1
2 FAMILY_SIZE_V4
3 AGE_V9
Number of units* 30
Rescaling method for covariates Standardized
Hidden layer(s) Number of hidden layers 2
Number of units in hidden layer 1a 10
Number of units in hidden layer 2a 8
Activation function Hyperbolic tangent
Output layer Dependent variables 1 MEP_SCORE
Number of units 1
Rescaling method for scale dependents Normalized
Activation function Sigmoid
Error function Sum of Squares
Note: * Excluding the bias Unit
Table 7. Model summary of an artificial neural network.
Model summary
Sum of squares error 62.158
T Relatilve error . 0.294
Stopping rule used Maximum number of epochs (100) exceeded
Training time 00:02.3
—— Sum of squares error 25.958
Testing Relativ -
elative error 0.804
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Table 8. Results of the normalized importance of inputs to the outcome.

Independent variable importance

Importance Normalized importance
WEALTH_V2 0.439 100.00%
EDUCATION_V3 0.09 20.40%
MARRIAGE_V5 0.081 7.10%
STATUS_V6 0.013 3.00%
RESIDENCE_V7 0.027 6.10%
SEX V8 0.026 6.00%
CASTE_V10 0.052 11.70%
SMORKING_V11 0.026 5.90%
HOUSE_V1 0.153 34.90%
FAMILY_SIZE_V4 0.101 23.00%
AGE_V9 0.042 9.60%

Source: Author's own calculation from NFHS-5 (2019-21) unit-level household data.
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We found that wealth (V2) has the highest normalized importance (100.00%), while status (V6) has the lowest
(3.00%) among the eleven variables predicting the MEP in West Bengal for the period 2019-21. According to the
MLP model, House (V1), Family size (V4), Education (V3), Caste (V10), Age (V9), and Marriage (V5) are significant
socio-demographic and economic factors contributing to energy poverty in West Bengal. Conversely, Residence
(V7), Sex (V8), and Smoking (V11) have less important contributions to MEP (Figure 5) (Table 8).

Mostly households with a high wealth index are less likely to be energy poor. Wealth plays a significant role in
determining MEP, which is very common. However, the number of rooms in the house for sleeping is another
important factor for energy poverty. The mean family size variable is 4.0864, indicating that, on average, there are
four members in a household (Table 4). So, families with more than 4 (mean value) members are more likely to be
energy poor, perhaps. The educational level of the household also seems to be another determining factor for energy
poverty. Households with an educated household head are more likely to inspire other members to pursue
education. As it is already established, severe income inequality is present among the different social groups (Anand
& Thampi, 2016). Hence, caste variable must be a factor for energy poverty. Household head’s age is the second
least influential determinant among the major factors for the predictive model of energy poverty in West Bengal.
The mean value of the head’s age is 48.4692, which implies that household heads over 48 may be prone to
multidimensional energy poverty. Marriage is a social institution that definitely demands more energy expenditure.

Hence, it also determines energy poverty with a normalized importance of 7.10%.

5. CONCLUSION
This study provides a comprehensive and methodologically robust examination of multidimensional energy
poverty across the districts of West Bengal, employing both logistic principal component analysis (LogPCA) and
artificial intelligence-based predictive modeling through multilayer perceptrons (MLPs). By constructing a
weighted multidimensional energy poverty index and categorizing it into moderate and severe levels, the study
uncovers not only the extent but also the intensity of energy deprivation experienced by households in the state.
The empirical results highlight stark disparities in energy poverty between districts, with areas like Puruliya
and Paschim Medinipur facing the most acute challenges. Conversely, urban centers such as Kolkata show
significantly lower levels of deprivation, pointing to a strong spatial divide rooted in infrastructural, economic, and
socio-political differences. The analysis of average intensity alongside headcount ratios presents a more nuanced
understanding of how deeply energy poverty is felt by affected populations, rather than just how widely it is spread.
The study further employs MLP models to identify the socio-demographic and economic determinants of
energy poverty. Key factors such as household wealth, size, housing conditions, educational attainment, and caste
emerge as dominant predictors. Among these, wealth holds the highest predictive importance, affirming the well-
established link between income levels and access to basic services. Interestingly, family size and housing
characteristics (such as the number of rooms available for sleeping) also show strong correlations, suggesting that
intra-household resource distribution and spatial adequacy play a significant role in shaping energy deprivation.
The use of artificial neural networks adds a valuable predictive dimension to this research. The relatively high
explanatory power (R* = 0.703) of the MLP model demonstrates its potential for policy forecasting and targeted
intervention planning. Such models can be employed by government agencies and development practitioners to
identify high-risk households and prioritize regions for clean energy initiatives and subsidy programs.
Policy recommendations arising from this analysis include:
e Targeted wealth creation through job-oriented schemes in high-poverty districts.
e Promotion of housing support mechanisms, especially for overcrowded households.
® Educational and awareness campaigns to improve energy literacy and encourage the adoption of efficient

appliances.
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e Expansion of decentralized renewable energy systems, particularly in geographically remote or
infrastructurally weak areas.
e (Caste-sensitive and inclusive energy planning that addresses the needs of socially marginalized groups.

In conclusion, addressing energy poverty in West Bengal demands a multidimensional, data-driven, and
inclusive approach that integrates technological tools with socio-economic insights. This study not only contributes
a novel methodological framework using LogPCA and Al but also provides actionable evidence for tailoring policy
interventions. Future research may focus on longitudinal tracking of energy poverty dynamics and incorporate

environmental and climate dimensions, thereby enriching the discourse on sustainable and equitable energy access.
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