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This study develops a robust methodological framework for measuring and analyzing 
multidimensional energy poverty using unit-level household survey data. The approach 
integrates logistic principal component analysis (Logistic PCA) to construct a 
composite index that assigns unequal weights to diverse energy deprivation indicators, 
thereby capturing the heterogeneity and complexity of energy poverty more accurately 
than equal-weight methods. The index is further disaggregated into moderate and 
severe categories, enabling a nuanced assessment of deprivation intensity. To 
complement the measurement stage, artificial intelligence techniques specifically 
multilayer perceptron (MLP) and artificial neural networks (ANN) are employed to 
model the socio-demographic and economic determinants of energy poverty. This dual-
stage design allows for both explanatory and predictive insights: the statistical 
modeling validates the significance of key predictors such as household wealth, family 
size, and access to basic amenities, while the AI models enhance predictive accuracy for 
identifying high-risk households and regions. By combining unequal-weight composite 
measurement with AI-driven predictive modeling, the framework offers a scalable and 
transferable tool for researchers and policymakers. It facilitates targeted, data-driven 
interventions aimed at reducing energy poverty and promoting equitable energy access. 
The methodological innovations presented here are adaptable to diverse contexts, 
making them valuable for comparative studies and policy applications beyond the 
specific dataset used. 
 

Contribution/ Originality: This study contributes to multidimensional energy poverty research by applying 

Logistic Principal Component Analysis (LOGPCA) to binary variables for unequal indicator weighting. It further 

employs a Multi-Layer Perceptron (MLP) artificial intelligence model, making it one of the few studies to do so and 

the first using NFHS-5 exclusively. 

 

1. INTRODUCTION 

Energy poverty refers to the lack of access to affordable, reliable, and clean energy, and it significantly impacts 

various dimensions of human well-being, including health, education, and economic productivity. It manifests 

through inadequate electricity access, absence of modern cooking facilities, and limited heating and cooling 

solutions. Conceptually, energy poverty can be understood through either a unidimensional or multidimensional 

lens. While unidimensional measures focus on singular aspects such as electricity availability or energy expenditure 

multidimensional approaches incorporate a broader range of factors, including the availability, reliability, 

affordability, and efficiency of energy services (Alkire & Foster, 2011; Nussbaumer, 2011). Although unidimensional 

measures offer simplicity, they often fail to capture the complex and interconnected nature of energy deprivation 

(Sen, 1999). 
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In India, energy poverty remains a persistent challenge, especially in states like West Bengal (Acharya & 

Sadath, 2019; Manasi & Mukhopadhyay, 2024; Teja, 2024). Despite national-level progress in electrification, many 

households continue to face unreliable supply, unaffordable tariffs, and inadequate infrastructure (Rajić et al., 2020). 

Rural regions, in particular, are disproportionately affected due to infrastructural gaps, leading to continued 

dependence on traditional biomass fuels such as firewood, kerosene, and cow dung (Bhide & Monroy, 2011; Lan, 

Khan, Sadiq, Chien, & Baloch, 2022). Moreover, socio-economic barriers including poverty, unemployment, and 

limited awareness of clean energy technologies exacerbate the issue. Gender disparities further compound energy 

poverty, as women and girls often bear the burden of fuel collection and household energy management (Abbas et 

al., 2022). 

Addressing multidimensional energy poverty thus requires an integrated strategy that combines energy access 

with broader social and economic development. Policy interventions such as subsidies for clean energy technologies, 

expansion of decentralized renewable energy systems, and promotion of energy-efficient appliances can significantly 

enhance energy security for marginalized populations (Bhide & Monroy, 2011). Moreover, community-level 

initiatives focusing on capacity building and awareness generation can support the long-term sustainability of these 

efforts. 

To effectively identify and address the drivers of energy poverty, advanced analytical tools are essential. One 

such method is the use of artificial intelligence, particularly Multilayer Perceptrons (MLPs), a class of artificial 

neural networks capable of modeling complex, non-linear relationships. MLPs are increasingly used in the social 

sciences for classification, regression, and predictive analytics. In the context of energy poverty, MLPs can process 

large datasets to uncover hidden patterns and forecast deprivation levels based on historical energy usage and 

socio-economic variables (Abbas et al., 2022). This makes them powerful tools for supporting evidence-based 

policymaking. 

Given this context, the present study aims to assess the extent of multidimensional energy poverty across the 

districts of West Bengal using unit-level data from NFHS-5 (2019–21). We employ logistic principal component 

analysis to construct a weighted multidimensional energy poverty index, which is then categorized into moderate 

and severe levels to better capture the intensity of deprivation. Furthermore, we utilize artificial intelligence 

techniques, particularly MLP models, to identify the key socio-demographic and economic factors influencing 

energy poverty in the region. By combining statistical rigor with machine learning, this study seeks to provide 

deeper insights into the structure of energy poverty and offer actionable recommendations for targeted 

interventions. 

 

2. LITERATURE REVIEW 

P. F. F. Nussbaumer (2011) emphasized the importance of developing and applying metrics to measure energy 

poverty in order to inform policy-making is emphasized. They introduced the Multidimensional Energy Poverty 

Index (MEPI-equal weight) as a tool to evaluate energy poverty at different levels. The MEPI focuses on the 

incidence and intensity of energy poverty, utilizing detailed household survey data for analysis. It is noted that the 

MEPI is just one instrument among others in monitoring progress and designing effective policies to address 

energy poverty (Nussbaumer, 2011). 

Pelz, Pachauri, and Groh (2018) the measurement of energy poverty has evolved from a binary perspective to a 

multidimensional approach, with the development of frameworks like the Multitier Framework (MTF). However, 

there are challenges in operationalizing the MTF at the global tracking level and gaining acceptance in national 

energy planning. The accurate measurement of access to basic household energy services at the global level requires 

further work, drawing lessons from debates on defining and estimating basic needs in other domains. There is a 

need for clearer separation of global and national tracking objectives, capturing dynamic movements in and out of 

energy poverty, and addressing intrahousehold distributions and vulnerabilities, particularly for women and 
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children. Collecting sex- and age-disaggregated data is important for better understanding and addressing these 

vulnerabilities. Overall, the value of any metric lies in its ability to inform policies that deliver the greatest welfare 

benefits, and multidimensional frameworks like the MTF are making progress in this regard (Pelz et al., 2018). 

Halkos and Aslanidis (2023) analyzed energy poverty (EP) is a complex issue that requires a multidimensional 

approach for effective monitoring and eradication. Here are key aspects they considered across different bases like 

theoretical basis, environmental basis, institutional basis, technical basis, socioeconomic basis, and multidimensional 

basis. They stressed that consensual and expenditure-based approaches are crucial for framing energy poverty. 

Defining what energy poverty truly means is essential for fostering public participation, strengthening democratic 

decision-making, and promoting public participation. Institutional cooperation is necessary to integrate Green Deal 

goals and combat corruption. Addressing social exclusion and inflation due to war is crucial to minimize the impacts 

on energy poverty. Considering energy-related apeirophobia in discussions is important. Energy poverty creates 

vicious circles impacting affordability and accessibility. Monitoring these dimensions is critical in both developed 

and developing countries. Collaboration and Green Deals can offer a cohesive policy framework to address energy 

poverty effectively (Halkos & Aslanidis, 2023). 

Sadath and Acharya (2017) assessed energy poverty in India using household-level primary data from the India 

Human Development Survey-II (IHDS-II), 2011-12. From this, they revealed extensive energy poverty in rural 

areas where traditional biofuels are heavily relied upon. Their key points from the assessment are: Dalits, Adivasis, 

and marginalized sections are most affected; women spend significant time and energy on collecting and using solid 

biofuels, impacting labor market participation and causing health issues due to indoor pollution among women and 

children; energy poverty is multidimensional and should be evaluated using a theoretical framework like Amartya 

Sen's capability approach with a Multidimensional Energy Poverty Index (MEPI) (Sadath & Acharya, 2017). 

Acharya and Sadath (2019) discussed Access to modern energy resources plays a crucial role in promoting the 

welfare of society globally. Electrified households enable children to study comfortably at night, contributing to 

better educational outcomes. Electrification enhances security, especially for women and girls, while access to LPG 

improves health outcomes by reducing health risks associated with traditional biofuels. Transitioning to clean 

energy sources like LPG not only ensures healthier cooking practices but also frees up time for women and girls to 

engage in other productive activities. Energy security is vital for sustaining life, particularly in cold regions, and is 

essential for industrial economies to promote manufacturing and generate employment opportunities. The study 

examined the extent of energy poverty in India and its relationship with economic development between 2004–05 

and 2011–12. Despite progress, a significant portion of the population, especially in poor states, still lacks access to 

modern energy services, suggesting the need for further interventions (Acharya & Sadath, 2019). 

Bhide and Monroy (2011) pointed out that access to clean energy is crucial for sustainable development, 

particularly in India, where a significant percentage of the global poor reside. Given that most of India's poor live in 

rural areas, enhancing access to energy sources in these regions is paramount for development and poverty 

reduction. Despite various government programs and initiatives, there are challenges in meeting development goals 

and reducing energy poverty. Unrealistic targets highlight the need for increased efforts, especially in promoting 

renewable energy technologies (Bhide & Monroy, 2011). 

Lan et al. (2022) examined the energy poverty in five Asian countries and revealed insights into energy access 

and its implications. Sri Lanka and Bangladesh face higher levels of energy poverty compared to India and Pakistan. 

Pakistan and India rely significantly on imported oil, while Bangladesh has reduced its dependence on imported oil 

over the past decade. A significant portion of India's population lacks access to modern cooking methods, 

contributing to energy poverty. Factors like access to electricity, clean fuels for cooking, and private investment in 

energy show significant relationships with the energy poverty index in all countries (Lan et al., 2022). 

Nussbaumer's (2011) analysis contributes significantly to the field in two main ways: the MEPI methodology 

and the global application of MEPI. The study conducted a cross-country analysis of energy poverty at an 
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aggregated level, emphasizing the diversity of energy poverty landscapes between countries. By analyzing the 

evolution of energy poverty over time using the latest data, the study identifies positive trends in reducing energy 

poverty intensity in selected sub-Saharan countries. The MEPI not only assesses the incidence of energy poverty 

but also provides insights into the intensity of energy poverty, showcasing improvements in all countries analyzed. 

Exploring the connection between MEPI results and policy analysis can help identify effective policies and 

strategies to address energy poverty (Nussbaumer, 2011). 

Abbas et al. (2022) measured and analyzed extreme multidimensional energy poverty in developing countries 

using the Multidimensional Energy Poverty Index (MEPI) and identified key socioeconomic determinants through 

supervised machine learning. The MEPI highlighted widespread severe energy poverty across Asian and African 

countries, with specific nations like Afghanistan, Yemen, Nepal, India, and others being particularly susceptible. 

Machine learning algorithms identified significant socioeconomic factors influencing multidimensional energy 

poverty, including household wealth, housing characteristics, marital status of breadwinners, and their residential 

location. The study emphasized that a combination of various socioeconomic variables, such as income, education, 

and employment nature, collectively contributes to multidimensional energy poverty rather than a single factor. In 

conclusion, the study underscores the importance of addressing severe energy poverty by targeting basic energy 

services, enhancing household socioeconomic status, and promoting universal access to modern energy sources. 

Implementing these policy directions can lead to significant reductions in energy poverty and improve overall well-

being for communities affected by energy deprivation (Abbas et al., 2022). 

 

3. DATA AND METHODOLOGY 

In this present study, we used unit-level household data from the National Family Health Survey 5 (NFHS-5) 

for the period 2019-2021 for the districts of West Bengal. We also used reports such as Energy Statistics 2020 by 

the Government of India (India, 2020) and Key World Energy Statistics 2020 (International Energy Agency, 2020). 

West Bengal’s Energy Transition (Teja, 2024) for the study. Statistical packages used for data preparation and 

estimation include R-Programme 4.3.3, SPSS 26, and Microsoft Excel 365. 

For the estimation of Multidimensional Energy Poverty (MEP), we followed the methodology proposed by the 

Oxford Poverty & Human Development Initiative (OPHI) (Nussbaumer, 2011). We considered five dimensions of 

energy poverty, which are Cooking (D-1), Lighting (D-2), Telecommunication (D-3), Education/Entertainment (D-

4), and Household Appliances (D-5). Then, we used multiple indicators to acknowledge these dimensions. The 

indicators are Type of Fuel used for cooking (I), Separate Kitchen (II), Electricity Access (III), Mobile/Landline 

(IV), Radio (V), Television (VI), Computer (VII), Fan (VIII), Bike (IX), Fridge (X), and Water Pump (XI) (Manasi & 

Mukhopadhyay, 2024) (Table 1). 

 

Table 1. Dimensions and indicators used for estimating MEP with unequal weights by logistic PCA. 

Dimensions Indicators Cause of deprivation Unequal weights by 
LOGPCA 

Cooking (D-1) Type of fuel used for cooking (I) If unclean fuel is used 0.0979 
Separate kitchen (II) If no such kitchen is 

available 
0.1051 

Lightning (D-2) Electricity access (III) No access to electricity 0.0597 
Telecommunication (D-3) Mobile/ landline (IV) Not having mobile or 

landline 
0.0597 

Education/ Entertainment 
(D-4) 

Radio (V) Not having radio 0.1104 
Television (VI) Not having television 0.0849 
Computer (VII) Not having computer 0.0950 

Household appliances (D-5) Fan (VIII) Not having electric fan 0.0849 
Bike (IX) Not using motorbike 0.1025 
Fridge (X) Not having refrigerator 0.0998 
Water Pump (XI) Not having water pump 0.1004 
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Most of the studies used equal weights for the estimation of MEP, which is quite logical but not always 

effective due to its heavy dependence on standard theory, which may or may not be perfectly applicable to different 

regions. Additionally, some studies have used an unequal weighting system to achieve region-specific accuracy, 

primarily utilizing Principal Component Analysis (PCA) (Manasi & Mukhopadhyay, 2024). PCA is generally 

suitable for continuous variables, not categorical variables. As in our study, most variables were categorical 

(especially with binary outcomes); hence, PCA is not very effective for obtaining weights of the variables. For this 

study, we used Logistic Principal Component Analysis (LOGPCA). 

Logistics Principal Component Analysis (Das, 2021) is a multivariate generalization of the so-called Bernoulli 

distribution. The Bernoulli distribution for a univariate binary random variable: 

𝑃(𝑥|𝑝) = 𝑝𝑥(1 − 𝑝)1−𝑥    (1) 

Where 𝑥 ∈ {0, 1} with p as the mean. We can write this distribution in terms of the log-odds, where the 

parameter. 

𝜃 = 𝑙𝑜𝑔 (
𝑝

1−𝑝
)    (2) 

So, the logistic function. 

𝜎(𝜃) =  [1 + 𝑒−𝜃]     (3) 

Now the Bernoulli distribution becomes. 

𝑃(𝑥|𝜃) = 𝜎(𝜃)𝑥𝜎(−𝜃)1−𝑥    (4) 

The above expression is considered as the Bernoulli distribution expressed as a member of the exponential 

family. A generalization of the above equation gives us the Logistic Principal Component Analysis model (Landgraf, 

2016; Schein, Saul, & Ungar, 2003). 

Assuming there is a d-dimensional binary data set with n observations, the matrix notation would be:(𝑥𝑖𝑗)
𝑛×𝑑

. 

If 𝑥𝑖𝑗  is an element with Bernoulli probability 𝑝𝑖𝑗 , then the parameter 𝜃𝑖𝑗 is the logit of the probability. 

𝜃𝑖𝑗 =  𝑙𝑜𝑔 (
𝑝𝑖𝑗

1−𝑝𝑖𝑗
)     (5) 

There are three major types of logistic principal component analysis, which are Exponential Family PCA, 

Logistic PCA, and Convex Logistic PCA. 

Collins suggested exponential family PCA mainly for binary variables. The assumption made by Collins was 

that the logit of the probability matrix is presumed as a matrix factorization. 

𝑙𝑜𝑔𝑖𝑡(𝑃) = 𝑘𝑛𝜇𝑇 + 𝐴𝐵𝑇      (6) 

Here A & B are the lower rank, k & μ are vectors of dimension d of main effects (Collins, Dasgupta, & Schapire, 

2001; Landgraf, 2016). 

Landgraf extends Pearson’s Principal Component Analysis. Pearson’s idea was to find a rank-k projection that 

minimizes the mean squared error of the data, which may be very close to the original data. In notation, it 

minimizes. 

1

𝑛
∑ ‖(𝑥𝑖 − 𝜇) − 𝑈𝑈𝑇(𝑥𝑖 − 𝜇)‖2𝑛

1      (7) 

Over μ and n×d orthonormal matrix U., The Logistic PCA extends PCA for binary data, using the projection 

of the natural parameters from the Bernoulli saturated model, which minimizes the Bernoulli deviance. According 

to Landgraf, letting the d-dimensional vector of natural parameters from the Bernoulli saturated model that is 𝜃𝑖 

estimated by 

𝜃̂𝑖 = 𝜇 − 𝑈𝑈𝑇(𝜃𝑖 − 𝜇)     (8) 

Where μ and U are solved for minimizing the Bernoulli deviance. 

𝐷(𝛩̂) = ∑ ∑ −2𝑥𝑖𝑗𝜃̂𝑖𝑗 + 2𝑙𝑜𝑔 (1 + 𝑒𝑥𝑝(𝜃̂𝑖𝑗))𝑑
𝑗=1

𝑛
𝑖=1      (9) 
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The logistic PCA model has three important benefits over the exponential family PCA: these are: 

(i) The number of parameters does not increase with the number of observations. 

(ii) The principal component scores can be interpreted easily as linear functions of the data. 

(iii)  Lastly, only the matrix multiplication is needed when using new data for PCA (Landgraf, 2016; Landgraf & 

Lee, 2020). 

The Convex Logistic PCA is very similar to Logistic PCA. Here, in the Convex Logistic PCA, minimization is 

performed over the convex hull1 of rank k projection matrices rather than minimization over rank k projection 

matrices. Convex Logistic PCA can be solved more quickly and reliably (Landgraf & Lee, 2020). It is primarily 

developed for categorical variables (Das, 2021). By using LOGPCA, we have estimated the unequal weights for 

different indicators under different dimensions (Table 1). 

After obtaining the unequal weights, cut-offs are to be fixed. Using the unequal weights, we obtained the 

Multidimensional Energy Poverty Score (MEP Score) for each individual. Then, we proceed as follows: 

𝑊𝑡𝑀𝑒𝑎𝑛(𝑀𝐸𝑃 𝑆𝑐𝑜𝑟𝑒) =
∑ {𝑀𝐸𝑃 𝑆𝑐𝑜𝑟𝑒𝑖 ×(𝐻𝑆𝑖)}𝑛

𝑖=1

∑ 𝐻𝑆𝑖
𝑛
𝑖=1

     (10) 

This is the weighted mean of MEP Score and the weights we used is the family size of the households (𝐻𝑆𝑖). 

𝑊𝑡𝑆𝑑(𝑀𝐸𝑃 𝑆𝑐𝑜𝑟𝑒) = √
∑ {(𝐻𝑆𝑖)×(𝑀𝐸𝑃 𝑆𝑐𝑜𝑟𝑒𝑖−𝑊𝑡𝑀𝑒𝑎𝑛(𝑀𝐸𝑃 𝑆𝑐𝑜𝑟𝑒))

2
}𝑛

𝑖=1

∑ 𝐻𝑆𝑖
𝑛
𝑖=1

      (11) 

Now we have the weighted standard deviation of MEP Score, here also used the family size of the households 

as weights. We used 𝑊𝑡𝑀𝑒𝑎𝑛(𝑀𝐸𝑃 𝑆𝑐𝑜𝑟𝑒) & 𝑊𝑡𝑆𝑑(𝑀𝐸𝑃 𝑆𝑐𝑜𝑟𝑒) to determine Moderate Multidimensional Energy 

Poverty & Severe Multidimensional Energy Poverty cut-offs as follows: 

𝑀𝑂𝐷𝑀𝐸𝑃∝ = 𝑊𝑡𝑀𝑒𝑎𝑛(𝑀𝐸𝑃 𝑆𝑐𝑜𝑟𝑒) − 0.5 × 𝑊𝑡𝑆𝑑(𝑀𝐸𝑃 𝑆𝑐𝑜𝑟𝑒) 

𝑆𝐸𝑉𝑀𝐸𝑃∝ = 𝑊𝑡𝑀𝑒𝑎𝑛(𝑀𝐸𝑃 𝑆𝑐𝑜𝑟𝑒) − 0.5 × 𝑊𝑡𝑆𝑑(𝑀𝐸𝑃 𝑆𝑐𝑜𝑟𝑒) 

Here 𝑀𝑂𝐷𝑀𝐸𝑃∝ = 0.4529 (Moderate Multidimensional Energy Poverty ∝ cut-off) & 𝑆𝐸𝑉𝑀𝐸𝑃∝ = 0.6300 

(Severe Multidimensional Energy Poverty ∝ cut-off) are the estimated MEP cut-offs and the value of ∝ is 0.5. Now 

for identification, we used the cut-offs as follows: if the Multidimensional Energy Poverty Score (MEP Score) of a 

household is greater than or equal to 0.4529, then we consider that household to be experiencing Moderate 

Multidimensional Energy Poverty. Conversely, if the MEP Score is greater than or equal to 0.6300, then the 

household is considered to be experiencing Severe Multidimensional Energy Poverty. 

After cut-offs, we estimated the Moderate and Severe MEP Headcount Ratios (MEPHCR) and Average 

Intensity (MEPAVGINT) for the districts of West Bengal. We followed the methodology proposed by OPHI for 

Multidimensional Poverty, as outlined by Alkire & Foster (2011). 

𝑀𝑂𝐷𝑀𝐸𝑃𝐼 = 𝑀𝑂𝐷𝑀𝐸𝑃𝐻𝐶𝑅 × 𝑀𝑂𝐷𝑀𝐸𝑃𝐴𝑉𝐺𝐼𝑁𝑇 

𝑆𝐸𝑉𝑀𝐸𝑃𝐼 = 𝑆𝐸𝑉𝑀𝐸𝑃𝐻𝐶𝑅 × 𝑆𝐸𝑉𝑀𝐸𝑃𝐴𝑉𝐺𝐼𝑁𝑇 

Where MODMEPI and SEVMEPI are the Moderate and Severe Multidimensional Energy Poverty Indices; 

MODMEPHCR and SEVMEPHCR are the Moderate and Severe Multidimensional Energy Poverty Headcount 

Ratios; MODMEPAVGINT and SEVMEPAVGINT are the Moderate and Severe Multidimensional Energy 

Poverty Average Intensities. 

Now for the identification of socio-demographic determinants of MEP, we used different socio-demographic 

and economic variables: House (V1), Wealth (V2), Education (V3), Family Size (V4), Marriage (V5), Status (V6), 

Residence (V7), Sex (V8), Age (V9), Caste (V10), and Smoking (V11) (Abbas et al., 2022) (Table 3). To estimate the 

importance of these socio-demographic and economic variables in energy poverty we used Multilayer Perceptron 

 
1 Convex hull is the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the 

subset. In PCA for clustering of points a convex hull is the smallest polygon that includes all the points of a given level. 
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Model (MLP) under artificial neural network (Abbas et al., 2022; Bagheri, Taridashti, Farahani, Watson, & Rezvani, 

2023). A neural network is a computer program that can identify patterns in data sets and perform tasks faster than 

average programs. It learns to predict data outcomes by analyzing thousands of examples. Multi-layer perceptrons 

(MLPs) are composed of interconnected perceptrons, each with weights that affect the network's outcome. MLPs 

are also known as feedforward artificial neural networks (Rajić et al., 2020). For our MLP, we have a total of eleven 

variables, of which eight are factors (categorical) and the remaining three are covariates (continuous). We used two 

hidden layers, with the activation functions being hyperbolic tangent (for inputs) and sigmoid (for output). We 

considered the MEP score as our output variable (Table 6). The architecture of the Multi-Layer Perceptron (MLP) 

model used to estimate the Multidimensional Energy Poverty (MEP) score consists of 31 input variables, including 

categorical indicators such as wealth, education, marital status, residence, caste, smoking habits, household 

characteristics, and demographic attributes. These inputs are processed through two hidden layers one with 11 

neurons and another with 9 neurons both activated using the hyperbolic tangent function. The final output layer 

generates the MEP score, with a sigmoid activation function ensuring values remain bounded between 0 and 1. 

This design enables the model to capture complex, nonlinear relationships among socioeconomic and demographic 

variables in predicting energy poverty (Figure 4). 

 

4. RESULTS AND DISCUSSION 

We subdivided this section into two parts: the first part presents the energy poverty estimates of the districts of 

West Bengal, and the second part provides a predictive analysis of the socio-demographic and economic factors 

influencing energy poverty in West Bengal using a multilayer perceptrons model under an artificial neural network. 

As mentioned in the data & methodology section, we used two types of multidimensional energy poverty 

(MEP) estimates: moderate and severe. For both cases, we estimated the headcount ratio and average intensity. For 

moderate MEP, Puruliya (0.8838) and Kolkata (0.3948) were the two districts with the lowest and highest 

headcount ratios among the districts of West Bengal, respectively. Meanwhile, for the entire state of West Bengal, 

approximately 74% of households were multidimensionally energy poor at the moderate level. Similarly, for severe 

MEP, Puruliya (0.6382) and Kolkata (0.0671) were the two districts with the lowest and highest estimates of 

headcount ratios among all districts of West Bengal. About 34% of households experienced severe multidimensional 

energy poverty. 

Let us focus on the average intensities of MEPs. We found a similar picture to headcount ratios. Here, also, 

Puruliya and Kolkata were the two districts with extreme levels of unequal energy poverty for both moderate and 

severe categories. An average energy-poor household in the state experiences approximately 63% and 72% 

intensities for moderate and severe energy poverty, respectively. 

We estimated the MEPIs of moderate and severe levels. The same results were obtained as with the headcount 

ratios and average intensities (Table 2). 

 

Table 2. District-wise different multidimensional energy poverty estimates of West Bengal during 2019-2021. 

Districts 
Moderate 
MEPHCR 

Moderate 
MEPAVGINT 

Severe 
MEPHCR 

Severe 
MEPAVGINT 

Moderate 
MEPI 

Severe 
MEPI 

Bankura 0.8369 0.6695 0.4994 0.7465 0.5603 0.3728 
Bardhaman 0.6732 0.634 0.301 0.733 0.4268 0.2207 
Birbhum 0.8091 0.6323 0.4056 0.708 0.5116 0.2872 
Daskshin 
Dinajpur 

0.8076 0.624 0.3533 0.7117 0.5039 0.2514 

Darjeeling 0.7038 0.6099 0.2461 0.7267 0.4292 0.1788 
Howrah 0.6037 0.5999 0.1779 0.715 0.3622 0.1272 
Hugli 0.6626 0.6195 0.2623 0.7224 0.4104 0.1895 
Jalpaiguri 0.704 0.6177 0.272 0.7238 0.4349 0.1969 
Koch Bihar 0.8391 0.6149 0.3543 0.7002 0.516 0.2481 
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Districts 
Moderate 
MEPHCR 

Moderate 
MEPAVGINT 

Severe 
MEPHCR 

Severe 
MEPAVGINT 

Moderate 
MEPI 

Severe 
MEPI 

Kolkata 0.3948 0.5731 0.0671 0.7064 0.2262 0.0474 
Maldah 0.8112 0.6281 0.3842 0.7071 0.5095 0.2716 
Murshidabad 0.8364 0.6368 0.4329 0.7136 0.5326 0.309 
Nadia 0.7563 0.6201 0.3362 0.6994 0.4689 0.2351 
North 24 
PGNS 

0.5552 0.5941 0.2089 0.692 0.3298 0.1445 

Paschim 
Medinipur 

0.878 0.6626 0.5198 0.735 0.5818 0.382 

Purba 
Medinipur 

0.8786 0.6391 0.4708 0.7044 0.5615 0.3316 

Puruliya 0.8838 0.7278 0.6382 0.7928 0.6432 0.506 
South 24 
PGNS 

0.7492 0.6121 0.3064 0.7005 0.4585 0.2146 

Uttar Dinajpur 0.8134 0.6267 0.3905 0.7059 0.5098 0.2756 
West Bengal 0.7438 0.6324 0.3465 0.7232 0.4704 0.2506 

Source: Authors own calculation from NFHS-5 (2019-21) unit level household data. 

 

We observed that districts (Howrah, Hugli, North 24 PGNS, South 24 PGNS) sharing borders with Kolkata 

had low energy poverty. As we move further from Kolkata, energy poverty increases. We also found that the 

extreme northern districts of West Bengal, such as Darjeeling, Jalpaiguri, and Cooch Behar, have less energy 

poverty (Figure-1, 2, 3). 

 

 
Figure 1. (a) Moderate MEPHCR & (b) Moderate MEPAVGINT of the Districts of West Bengal for the period 2019-21. 

Source: Authors own calculation from NFHS-5 (2019-21) unit-level household data. 
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Figure 2. (a) Severe MEPHCR & (b) Severe MEPAVGINT of the Districts of West Bengal for the period 2019-21. 

Source: Authors own calculation from NFHS-5 (2019-21) unit-level household data. 

 

 
Figure 3. (a) Moderate MEPI & (b) Severe MEPI of the Districts of West Bengal for the period 2019-21. 

Source: Authors own calculation from NFHS-5 (2019-21) unit-level household data. 
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Figure 4. Architecture of artificial neural network for MEP Score by multilayer perceptron model. 
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Figure 5. Normalized importance of independent variables by MLP. 

Source: Authors own calculation from NFHS-5 (2019-21) unit-level household data. 

 

In continuation of our discussion, we move to the second sub-section of this section, which is the analysis of the 

predictive model for the determination of socio-demographic and economic factors responsible for energy poverty in 

West Bengal for the period 2019-20. We used eleven socio-demographic and economic variables as input and the 

multidimensional energy poverty scores as the output for the multilayer perceptrons model of an artificial neural 

network (Table 3). Input variables were mostly skewed in their raw nature (Table 4). So, we needed to standardize 

them to achieve better and more efficient results. The sample size was 18,187 for the entire state of West Bengal. 

Out of this, we used 12,754 (70.10%) for training and 5,433 (29.90%) for testing (Table 5). We used normalization 

as a rescaling method for scale-dependent variables (Table 6). The relative error for training was 0.2942, and for 

testing was 0.3040. These were quite low, implying a high level of significance of the model (Table 7). The plotted 

graph between the predictive value and the MEP_SCORE is quite significant as the fitted regression line having 

R2=0.703, means near about more than 70% good fit (Figure 6). Also, the graph of residuals by predicted values 

shows an insignificant fit, as the R2 value is very low, indicating almost no relation between residuals and the 

predicted values (Figure 7). 

 

Table 3. Variables for the predictive model by MLP. 

Category Variables Definition 

Input 

House (V1) No. of rooms used for Sleeping 
Wealth (V2) Wealth Index (grouped) 
Education (V3) Household head's educational attainment 
Family Size (V4) No. of Household members 
Marriage (V5) Is the household head currently married or not? 
Status (V6) Ownership status of the house 
Residence (V7) Place of residence Rural/Urban 
Sex (V8) Household head's Sex 
Age (V9) Household head's age 
Caste (V10) The household head belongs to a social group. 
Smoking (V11) Household head's smoking habits 

Output MEP Scores 
Multidimensional Energy Poverty (MEP) scores for each household 
range between 0 and 1. 
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Table 4. Statistical summary of the input variables. 

  Minimum Maximum Mean Std. Deviation Skewness 

HOUSE_V1 0.0000 25.0000 1.9229 1.0944 5.1247 
WEALTH_V2 1.0000 5.0000 2.3069 1.2758 0.6337 
EDUCATION_V3 0.0000 8.0000 1.2865 0.9828 0.3346 
FAMILY_SIZE_V4 1.0000 19.0000 4.0864 1.8007 1.1802 
MARRIAGE_V5 0.0000 2.0000 1.0964 0.3748 1.0428 
STATUS_V6 0.0000 1.0000 0.4215 0.4938 0.3179 
RESIDENCE_V7 1.0000 2.0000 1.7008 0.4579 -0.8770 
SEX_V8 1.0000 2.0000 1.1597 0.3664 1.8578 
AGE_V9 15.0000 98.0000 48.4692 13.8949 0.2332 
CASTE_V10 1.0000 8.0000 3.9201 2.6542 0.5311 
SMOKING_V11 0.0000 8.0000 0.5546 0.5528 2.3819 

 

Table 5. Results of case processing summary. 

Case Processing Summary 
    N Percent 

Sample Training 12754 70.10% 
  Testing 5433 29.90% 

Valid   18187 100.00% 
Excluded   0   

Total   18187   

 

Table 6. Results of network information. 

Network information 

Input layer Factors 1 WEALTH_V2 
2 EDUCATION_V3 
3 MARRIAGE_V5 
4 STATUS_V6 
5 RESIDENCE_V7 
6 SEX_V8 
7 CASTE_V10 
8 SMOKING_V11 

Covariates 1 HOUSE_V1 
2 FAMILY_SIZE_V4 
3 AGE_V9 

Number of units*  30 
Rescaling method for covariates  Standardized 

Hidden layer(s) Number of hidden layers  2 
Number of units in hidden layer 1a  10 
Number of units in hidden layer 2a  8 
Activation function  Hyperbolic tangent 

Output layer Dependent variables 1 MEP_SCORE 
Number of units  1 
Rescaling method for scale dependents  Normalized 
Activation function  Sigmoid 
Error function  Sum of Squares 

Note: * Excluding the bias Unit 

 

Table 7. Model summary of an artificial neural network. 

Model summary 

Training 

Sum of squares error 62.158 
Relative error 0.294 
Stopping rule used Maximum number of epochs (100) exceeded 
Training time 00:02.3 

Testing 
Sum of squares error 25.958 
Relative error 0.304 
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Table 8. Results of the normalized importance of inputs to the outcome. 

Independent variable importance 
  Importance Normalized importance 

WEALTH_V2 0.439 100.00% 
EDUCATION_V3 0.09 20.40% 
MARRIAGE_V5 0.031 7.10% 
STATUS_V6 0.013 3.00% 
RESIDENCE_V7 0.027 6.10% 
SEX_V8 0.026 6.00% 
CASTE_V10 0.052 11.70% 
SMOKING_V11 0.026 5.90% 
HOUSE_V1 0.153 34.90% 
FAMILY_SIZE_V4 0.101 23.00% 
AGE_V9 0.042 9.60% 

Source: Author's own calculation from NFHS-5 (2019-21) unit-level household data. 

 

 
Figure 6. Predicted values based on the observed graph. 

 

 
Figure 7. Residual by predicted graph. 
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We found that wealth (V2) has the highest normalized importance (100.00%), while status (V6) has the lowest 

(3.00%) among the eleven variables predicting the MEP in West Bengal for the period 2019-21. According to the 

MLP model, House (V1), Family size (V4), Education (V3), Caste (V10), Age (V9), and Marriage (V5) are significant 

socio-demographic and economic factors contributing to energy poverty in West Bengal. Conversely, Residence 

(V7), Sex (V8), and Smoking (V11) have less important contributions to MEP (Figure 5) (Table 8). 

Mostly households with a high wealth index are less likely to be energy poor. Wealth plays a significant role in 

determining MEP, which is very common. However, the number of rooms in the house for sleeping is another 

important factor for energy poverty. The mean family size variable is 4.0864, indicating that, on average, there are 

four members in a household (Table 4). So, families with more than 4 (mean value) members are more likely to be 

energy poor, perhaps. The educational level of the household also seems to be another determining factor for energy 

poverty. Households with an educated household head are more likely to inspire other members to pursue 

education. As it is already established, severe income inequality is present among the different social groups (Anand 

& Thampi, 2016). Hence, caste variable must be a factor for energy poverty. Household head’s age is the second 

least influential determinant among the major factors for the predictive model of energy poverty in West Bengal. 

The mean value of the head’s age is 48.4692, which implies that household heads over 48 may be prone to 

multidimensional energy poverty. Marriage is a social institution that definitely demands more energy expenditure. 

Hence, it also determines energy poverty with a normalized importance of 7.10%. 

 

5. CONCLUSION 

This study provides a comprehensive and methodologically robust examination of multidimensional energy 

poverty across the districts of West Bengal, employing both logistic principal component analysis (LogPCA) and 

artificial intelligence-based predictive modeling through multilayer perceptrons (MLPs). By constructing a 

weighted multidimensional energy poverty index and categorizing it into moderate and severe levels, the study 

uncovers not only the extent but also the intensity of energy deprivation experienced by households in the state. 

The empirical results highlight stark disparities in energy poverty between districts, with areas like Puruliya 

and Paschim Medinipur facing the most acute challenges. Conversely, urban centers such as Kolkata show 

significantly lower levels of deprivation, pointing to a strong spatial divide rooted in infrastructural, economic, and 

socio-political differences. The analysis of average intensity alongside headcount ratios presents a more nuanced 

understanding of how deeply energy poverty is felt by affected populations, rather than just how widely it is spread. 

The study further employs MLP models to identify the socio-demographic and economic determinants of 

energy poverty. Key factors such as household wealth, size, housing conditions, educational attainment, and caste 

emerge as dominant predictors. Among these, wealth holds the highest predictive importance, affirming the well-

established link between income levels and access to basic services. Interestingly, family size and housing 

characteristics (such as the number of rooms available for sleeping) also show strong correlations, suggesting that 

intra-household resource distribution and spatial adequacy play a significant role in shaping energy deprivation. 

The use of artificial neural networks adds a valuable predictive dimension to this research. The relatively high 

explanatory power (R² ≈ 0.703) of the MLP model demonstrates its potential for policy forecasting and targeted 

intervention planning. Such models can be employed by government agencies and development practitioners to 

identify high-risk households and prioritize regions for clean energy initiatives and subsidy programs. 

Policy recommendations arising from this analysis include: 

● Targeted wealth creation through job-oriented schemes in high-poverty districts. 

● Promotion of housing support mechanisms, especially for overcrowded households. 

● Educational and awareness campaigns to improve energy literacy and encourage the adoption of efficient 

appliances. 
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● Expansion of decentralized renewable energy systems, particularly in geographically remote or 

infrastructurally weak areas. 

● Caste-sensitive and inclusive energy planning that addresses the needs of socially marginalized groups. 

In conclusion, addressing energy poverty in West Bengal demands a multidimensional, data-driven, and 

inclusive approach that integrates technological tools with socio-economic insights. This study not only contributes 

a novel methodological framework using LogPCA and AI but also provides actionable evidence for tailoring policy 

interventions. Future research may focus on longitudinal tracking of energy poverty dynamics and incorporate 

environmental and climate dimensions, thereby enriching the discourse on sustainable and equitable energy access. 
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