Abstract
In the past two decades, the repair and reconstruction of musculoskeletal tissues using biodegradable scaffold materials has emerged as one of the most promising approaches in tissue engineering. The aim of this study is to process, via hot melt extrusion, the biodegradable and biocompatible polymeric materials; poly(ethylene oxide) (PEO), poly(ethylene glycol) (PEG), ⍺-lactose monohydrate and poly(e-caprolactone) (PCL), and investigate their suitability in tissue regenerating applications. Concentrations of the polymer blends were varied in order to optimise the degradation rate of the matrix blend. The effect of extrusion and plasticiser on the thermal and melt viscosity properties of the blends was coincidentally monitored. Materials of both pellet and powder compositions were compared in order to determine which composition provided optimum results. Blends were characterised using melt flow index (MFI), differential scanning calorimetry (DSC), rheometry and degradation analysis. Addition of plasticiser was found to cause a decrease in viscosity and melt temperature of the materials, so too was the extrusion process albeit to a lesser extent, while addition of filler increased melt viscosity and melt temperature of the blend. A vital advantage of this study is the ability to fine tune the properties of the matrix by varying material concentrations, making these promising candidates for tissue engineering applications.